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ABSTRACT 

The Expected Moments Algorithm (EMA) codified in Bulletin 17C and implemented in the U.S. 

Army Corps of Engineers Statistical Software Package (HEC-SSP) and the U.S. Geological 

Survey Flood Frequency Analysis Software (PeakFQ) significantly improves flow frequency 

analysis. Several years of experience within USACE has identified multiple opportunities to 

incrementally improve the implementation procedures. Under certain conditions, each of the 

changes presented in this paper can improve the accuracy and credibility of a flow-frequency 

analysis. First, the procedure in the current software calculates a new weighted skew value after 

each EMA iteration resulting in an incorrect value for the final weighted skew estimate. Second, 

the current software does not report the effective record length (ERL) value needed for a typical 

stochastic flood hazard analysis when historical, censored, or regional skew information is 

included. Third, the current software uses the geometric mean of the low and high flow values to 

calculate plotting positions for flow interval data resulting in a lack of transparency and an 

interdependency between plotting position and distribution fitting calculations. Fourth, the 

current software does not calculate or report an estimate of the expected probability curve which 

is needed for risk informed decision making. Fifth, recoding of potentially influential low floods 

(PILF) can result in unrealistic values for the mean square error (MSE) of the at-site skew, 

confidence intervals, and ERL. This paper provides examples and proposed solutions for each of 

these items.  

INTRODUCTION 

Bulletin 17B guided flow-frequency analyses within the United States from the early 1980s 

through the late 2010s. This guidance recommended the use of the Log Pearson Type III 

probability distribution for annual maximum flows on unregulated streams fit by the method of 

moments (Interagency Advisory Committee on Water Data, 1982). The Bulletin 17C guidance 

brought about several major improvements to the computation of peak flow-frequency within the 

United States. This guidance incorporated changes motivated by four of the items listed as future 

work within Bulletin 17B and more than 30 years of post-Bulletin 17B research on flood 

processes and statistical methods (England, et al., 2018). As part of the Bulletin 17C 

methodology, the parameters of the Log Pearson Type III distribution are estimated using the 

Expected Moments Algorithm (EMA). Like Bulletin 17B, the Bulletin 17C methodology uses 

the method of moments, but does so in a more generalized way that accommodates historical 

flow intervals and censored unobserved flows, rather than using a series of adjustment 

procedures (Cohn, Lane, & Baier, 1997). The use of Bulletin 17C procedures provides improved 

confidence intervals for the resulting frequency curve that incorporate diverse information 
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appropriately, as historical data and censored values impact the uncertainty in the estimated 

frequency curve (Cohn, Lane, & Stedinger, 2001). Within the Bulletin 17C methodology, every 

annual peak flow in the analysis period, whether observed or not, is represented by a flow range. 

That range might simply be limited to an exact gaged value when one exists. However, it could 

also reflect an uncertain flow estimate. 

PURPOSE 

The goal of this paper is to motivate discussion and action directed toward making incremental 

improvements to the implementation procedures of Bulletin 17C and the supporting software. 

The items included in this paper were identified based on applying the methods and software in 

practice within the U.S. Army Corps of Engineers. 

PROPOSED IMPROVEMENTS 

Weighted Skew. The use of regional skew information within Federal flood-frequency 

guidelines dates to Bulletin 17, which included a procedure for weighting at-site skew and a 

regional skew (Water Resources Council, 1976). Tasker showed that the minimum variance 

skew estimator would be obtained by weighting at-site and regional skews by the inverse of their 

variances (Tasker, 1978). Bulletin 17B recommended the use of an inverse MSE weighting 

scheme to reflect estimator bias (Interagency Advisory Committee on Water Data, 1982). This 

weighting scheme is expressed as: 

 �̃� =
𝑀𝑆𝐸�̂� ∗ 𝐺 + 𝑀𝑆𝐸𝐺 ∗ 𝛾

𝑀𝑆𝐸�̂� + 𝑀𝑆𝐸𝐺
 (1) 

where: 

𝛾   at-site skew 

𝐺  regional skew 

𝑀𝑆𝐸�̂�   mean-square error of the at-site skew 

𝑀𝑆𝐸𝐺    mean-square error of the regional skew 

�̃�  weighted skew 

 

Equation (1) has been shown to minimize the MSE of the skew estimator so long as G is 

unbiased and independent of the at-site skew estimator (Griffis, Stedinger, & Cohn, 2004). 

Equation (1) is simply a weighted average of two normally distributed independent random 

variables. 

The current software implementation of EMA utilizes the following procedure from Appendix 7 

in Bulletin 17C (2018) to fit the LPIII distribution given a regional skew estimate. 

1. Estimate at-site skew 

a. Using at-site data, fit the LPIII distribution with EMA to estimate at-site skew (𝛾)  

b. Estimate the at-site skew 𝑀𝑆𝐸�̂� with EMA 

2. Estimate weighted skew 

a. Estimate LPIII parameters using Equations 7-1, 7-2, and 7-3 from Bulletin 17C 

b. Estimate a weighted skew coefficient (�̃�) using Equation (1) 
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c. Test for convergence; if not converged, return to step 2a. 

The above procedure leads to erroneous results when 1) the at-site and regional skew estimates 

differ by an appreciable amount or 2) many EMA iterations are required for convergence. In 

general, more EMA iterations are needed when large amounts of historical and censored data are 

included. The error occurs because a new weighted skew estimate is calculated after each EMA 

iteration in Step 2b. The at-site skew estimate for the current EMA iteration is influenced by the 

weighting that took place in the previous EMA iteration. This means the at-site skew estimate for 

the 2nd and all subsequent EMA iterations is no longer an independent at-site skew value and 

should not be used in Equation (1). The current procedure results in an overweighting of the 

regional skew that compounds with each additional EMA iteration. 

The issue was discovered during a recent flow-frequency analysis that utilized systematic, 

historical, paleoflood, and regional skew information. The evolution of the at-site and weighted 

skew estimates is shown in Figure 1 for analyses that included systematic only, systematic + 

historical, and systematic + historical + paleoflood information. As more at-site information was 

added to the analysis reflected by an increase in the ERL, the at-site skew 𝑀𝑆𝐸�̂� should decrease 

and the weighted skew estimate (solid circles) should have trended toward the at-site skew 

estimate (open squares). Instead, the weighted skew estimate trended in the opposite direction 

toward the regional skew estimate (dashed line) due to the overweighting of the regional skew. 

 

Figure 1. Real World Example of Erroneous Weighted Skew Results using Current Procedure 

The issue can also be demonstrated by experiment using synthetic datasets having fixed 

parameters and varying amounts of historical and censored data. Four sample datasets were 

generated to have an LPIII distribution with a mean (of logs) of 4.0, standard deviation (of logs) 

of 0.3, and at-site skew (of logs) of 0.3. These datasets had ERLs of approximately 50, 110, 220, 

and 450 years. A regional skew value of 0.1 with an 𝑀𝑆𝐸𝐺  of 0.078 was assumed for all four 

datasets. Figure 2 shows the evolution of the MSE and weighted skew estimate (solid circles) for 

each dataset. 
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Figure 2. Fixed Parameter Example of Erroneous Weighted Skew Results using Current 

Procedure 

The results shown in Figure 1 and Figure 2 demonstrate a similar behavior: the weighted skew 

coefficients obtained using the current implementation of EMA generally trend toward the 

regional skew coefficient as ERL increases. This result is counterintuitive and violates the first 

principles embodied in Equation (1). As ERL increases, the information content of the at-site 

skew estimator increases while the information content of the regional skew information remains 

the same. This means that the influence of regional skew on the weighted skew estimate should 

decrease with increasing at-site ERL. However, this behavior is not realized using the current 

procedure. The magnitude of the error is primarily a function of the number of EMA iterations 

which generally increases with increasing ERL when historical and censored data is included. 

Griffis et al, improved the estimation of the third moment within EMA by directly incorporating 

regional skew information (Griffis, Stedinger, & Cohn, 2004). The improvement is presented 

below as Equation (2) which is equivalent to Equation 7-10 within Bulletin 17C: 

 

𝛾𝑖+1 =
1

(𝑛 + 𝑛𝐺)�̂�𝑖+1
3 [𝑐3{∑(𝑋𝑠

> − �̂�𝑖)3 + ∑(𝑋𝑙
> − �̂�𝑖)

3

+∑(𝑋ℎ − �̂�𝑖)
3} + 𝑛𝑙

<E[(𝑋𝑙
< − �̂�𝑖)

3]

+𝑛ℎ
⊤E[(𝑋ℎ

< − �̂�𝑖)
3] + 𝑛𝐺𝐺�̂�𝑖+1

3 ]

 (2) 

where: 

𝑛𝐺  equivalent years of record assigned to the regional skew information 
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G  regional skew value 

 

The value of 𝑛𝐺  can be estimated using an inverted form of Equation 6 from Bulletin 17B, an 

inverted form of Equation 27 from Griffis (2003), or Equation 46 from Griffis (2003). The 

examples presented in this paper use Equation 6 from Bulletin 17B. 

Implementation of EMA software using Equation (2) ensures that the weighted skew 

corresponds to the adjusted mean and standard deviation fit to the data (Griffis, Stedinger, and 

Cohn, 2004), and eliminates the overweighting of the regional skew information that occurs with 

the current procedure. We propose modifying software that supports Bulletin 17C to use the 

following procedure:  

1. Estimate at-site skew 

a. Using at-site data, fit the LPIII distribution with EMA to estimate at-site skew (𝛾)  

b. Estimate the at-site skew 𝑀𝑆𝐸�̂� with EMA 

2. Estimate weighted skew 

a. Estimate nG 

b. Estimate LPIII parameters using Equations 7-1, 7-2, and 7-10 from Bulletin 17C 

c. Test for convergence; if not converged, return to Step 2b. 

The above procedure eliminates the use of Equation (1) and replaces the use of Equation 7-3 

with Equation 7-10 from Bulletin 17C. The previously described examples were used to 

demonstrate the improvement with the proposed procedure. The results are shown in Figure 3 

and Figure 4. 

The weighted skew coefficients obtained using the proposed procedure exhibit the correct 

behavior trending toward the at-site skew coefficient as the ERL increases and the at-site skew 

MSE decreases.  
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Figure 3. Real World Example Showing Improved Weighted Skew Estimates Using Proposed 

Procedure 

 

Figure 4. Fixed Parameter Example Showing Improved Weighted Skew Estimates Using 

Proposed Procedure 
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Effective Record Length. A variety of stochastic (monte-carlo) based methods exist for the 

purpose of modeling uncertainty in an analytical flow-frequency curve. These models are 

commonly used to support a variety of risk-informed decisions. Some examples include the 

Watershed Analysis Tool (HEC-WAT), Flood Damage Reduction Analysis (HEC-FDA), 

Reservoir Frequency Analysis (RMC-RFA), and Stochastic Event Flood Model (SEFM). 

Effective record length is commonly used as an input parameter to model the uncertainty in the 

flow-frequency curve using techniques such as the bootstrap (Efron, 1979) or parameter 

sampling distributions (USACE, 2016). Current Bulletin 17C procedures and software do not 

calculate or report the ERL needed for these types of analyses.  

Effective record length can be defined as “the number of years of systematic data that would 

produce the same MSE [or quantile variance] as a given combination of historical and systematic 

data.” (Stedinger and Cohn, 1986). When all the input data are systematic (exact), ERL is simply 

equal to the record length. When some input data consists of flow interval, censored, or regional 

skew information, ERL is unknown and must be estimated. 

Cohn, Lane, and Baier (1997) proposed using Equation (3) to estimate effective record length 

after demonstrating that record length is asymptotically proportional to the inverse of quantile 

variance. 

 𝐸𝑅𝐿𝑝 = 𝑁𝑆

𝑉𝑎𝑟[�̂�𝑝|𝑁𝑆]

𝑉𝑎𝑟[�̂�𝑝|𝑁𝑇]
 (3) 

where: 

𝐸𝑅𝐿𝑝  effective record length at the pth quantile 

p  a quantile where AEP = 1 - p 

𝑁𝑆  number of systematic (exact) data  

𝑁𝑇  number of combined systematic, historical, and censored data  

𝑉𝑎𝑟[�̂�𝑝|𝑁𝑆] variance of the logarithm of flow at the pth quantile using only the systematic 

(exact) data 

𝑉𝑎𝑟[�̂�𝑝|𝑁𝑇] variance of the logarithm of flow at the pth quantile using the combined 

systematic, historical, censored, and regional skew information 

 

We propose three improvements and clarifications to the ERL procedure for implementation in 

software that supports Bulletin 17C. The first improvement is to assume a linear relationship 

instead of a proportional relationship. This improves the accuracy of ERL estimates at record 

lengths on the order of 100 years or less. The second improvement is to define quantile variance 

conditional on the parameter set for the combined systematic, historical, censored, and regional 

data. The linear (and proportional) relationships are only valid when the parameter set (i.e., the 

aleatory uncertainty) is held constant. Strictly speaking, only the standard deviation (σ) and skew 

(γ) parameters need to be held constant. Figure 5 shows the concept of a linear relationship 

conditional on a fixed parameter set where each parameter set corresponds to a unique line. The 

third improvement is to clarify that an average effective record length should be estimated for a 

set of quantiles specified by the user. The selected set of quantiles should reflect the range of 

primary importance for the stochastic analysis. Effective record length will be different at each 

quantile, but typical stochastic flood models require a single representative value.  
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 Figure 5. Example of Linear Relationship Between Record Length and Inverse of 

Quantile Variance Conditional on a Parameter Set 

The recommended improvements can be implemented by writing a standard linear interpolation 

formula like Equation (4) and then solving for the unknown ERLp. We propose using the 

resulting Equation (5) in software that supports Bulletin 17C to estimate and report ERL. 

 
𝐸𝑅𝐿𝑝 − 𝑁1

𝑉𝑎𝑟[�̂�𝑝|𝑁𝑇 , 𝜃𝑇] − 𝑉𝑎𝑟[�̂�𝑝|𝑁1, 𝜃𝑇]
=

𝑁2 − 𝑁1

𝑉𝑎𝑟[�̂�𝑝|𝑁2, 𝜃𝑇] − 𝑉𝑎𝑟[�̂�𝑝|𝑁1, 𝜃𝑇]
 (4) 

 

 𝐸𝑅𝐿𝑝 = 𝑁1 + [
𝑉𝑎𝑟[�̂�𝑝|𝑁2, 𝜃𝑇]

𝑉𝑎𝑟[�̂�𝑝|𝑁𝑇 , 𝜃𝑇]
] [

𝑉𝑎𝑟[�̂�𝑝|𝑁1, 𝜃𝑇] − 𝑉𝑎𝑟[�̂�𝑝|𝑁𝑇 , 𝜃𝑇

𝑉𝑎𝑟[�̂�𝑝|𝑁1, 𝜃𝑇] − 𝑉𝑎𝑟[�̂�𝑝|𝑁2, 𝜃𝑇]
] [𝑁2 − 𝑁1] (5) 

where: 

𝑉𝑎𝑟[�̂�𝑝|𝑁2, 𝜃𝑇] quantile variance for a hypothetical systematic dataset having a size of N2 

and a parameter set of ΘT 

𝑉𝑎𝑟[�̂�𝑝|𝑁1, 𝜃𝑇] quantile variance for a hypothetical systematic dataset having a size of N1 

and a parameter set of ΘT  

𝜃𝑇 parameter set for the combined systematic, historical, and censored data 

In theory, N1 and N2 can be assigned any arbitrary integer values so long as N1≠N2. In practice, 

values of N1=NS and N2=NT are a reasonable choice. An upper bound on the order of N2<500 is 

another logical choice when NT>500 due to a long paleoflood record. 

Figure 6 and Equation (6) summarize an example estimate of ERL for Example 4 (Arkansas 

River at Pueblo, CO) presented in Appendix 10 of Bulletin 17C (England, et al., 2018). The total 

record length of 840 years yields an ERL0.99 of 167 years. Notice that the quantile variance for 

the combined dataset (Var[X0.99| NT , ΘT] = 0.00717) shown in the top left panel of Figure 6 is 

practically the same as the quantile variance for the equivalent systematic dataset (Var[X0.99| 

ERL0.99 , ΘT] = 0.00712) shown in the top right panel of Figure 6 satisfying the definition of 

ERL. For demonstration purposes, quantile variance for the two hypothetical systematic datasets 

shown in the bottom left and right panels of Figure 6 and the equivalent systematic dataset were 
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estimated using HEC-SSP version 2.2 by generating synthetic systematic datasets having the 

specified record length and parameter set. Notice that the parameter sets (𝜇, 𝜎, 𝛾) for all four 

datasets in Figure 6 are practically the same. For software implementation, the quantile variance 

can be calculated directly and more accurately based on the specified record lengths and 

parameter set without needing actual systematic data values. A slightly more precise estimate of 

ERL could also be obtained by implementing an optimization routine to find the value of ERLp 

that minimizes |𝑉𝑎𝑟[�̂�𝑝|𝑁𝑇 , 𝜃𝑇] − 𝑉𝑎𝑟[�̂�𝑝|𝐸𝑅𝐿𝑝, 𝜃𝑇]|. A solver would be trivial to implement, and 

the computation time would likely be negligible.   

 

Figure 6. Example Effective Record Length Estimate for Example 4 (Arkansas River at Pueblo, 

CO) in Appendix 10 of Bulletin 17C  

 𝐸𝑅𝐿𝑝 = 81 + [
0.00250

0.00717]
] [

0.01388 − 0.00717

0.01388 − 0.00250]
] [500 − 81] = 167 𝑦𝑒𝑎𝑟𝑠 (6) 

Plotting Positions for Interval Data. Empirical exceedance probability estimates for observed 

annual maxima are made using plotting positions. A generic plotting position formula for 

systematic (exact) observations can be expressed as (U.S. Army Corps of Engineers, 2021): 

 𝑃𝑖 =
𝑖 − 𝐴

𝑛 + 1 − 2𝐴
 (7) 

where: 

Pi  exceedance probability of the ith observed annual maxima 

i rank of observed annual maxima from largest (i = 1) to smallest (i = n) 

n   number of observed annual maxima 

A   constant 

Combined Systematic and Historical Data

Hypothetical Systematic Data 1

NT = 840

μ = 3.886
σ = 0.246
γ = 0.818
Var[X0.99| NT , ΘT] = 0.00717

N1 = 81

μ = 3.887
σ = 0.246
γ = 0.818
Var[X0.99| N1 , ΘT] = 0.01388

Hypothetical Systematic Data 2

N2 = 500

μ = 3.888
σ = 0.247
γ = 0.818
Var[X0.99| N2 , ΘT] = 0.00250

ERL0.99 ≈ 167

μ = 3.886
σ = 0.245
γ = 0.818
Var[X0.99| ERL0.99 , ΘT] = 0.00712

Equivalent Systematic Data
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An empirical probability distribution results from the application of Equation (7). Empirical 

distributions can be used to visually assess the fit of a parameterized analytical distribution such 

as Log Pearson Type III. When historical and censored data are included, an alternative plotting 

position methodology is needed. Hirsch and Stedinger (1987) developed a method to compute 

plotting positions for censored data. They emphasized the correct interpretation of the 

information conveyed by historical flood data, the recognition of the limited precision of 

estimates of the exceedance probabilities of historical floods, and showed that any estimator will 

be somewhat imprecise. (Hirsch & Stedinger, 1987). 

Bulletin 17C recommends use of the Hirsch-Stedinger threshold exceedance plotting position 

procedure (England, et al., 2018). The formula for floods exceeding a single perception threshold 

is expressed as: 

 𝑃𝑖 =
𝑘

𝑛
(

𝑖 − 𝐴

𝑛 + 1 − 2𝐴
) (8) 

where:  

Pi  exceedance probability of the ith above threshold observed annual maxima 

I rank of the above threshold floods from largest (i = 1) to smallest (i = k) 

k   number of floods above the threshold 

n   total record length including the threshold 

 

Current software uses a more generalized set of equations like Equation (8) to calculate plotting 

positions for above and below threshold floods given one or more thresholds. For historical flow 

interval data, the geometric mean (or log-average) of the user specified low and high flow values 

is used to determine if a flood is above or below a given threshold and to determine the rank of a 

flood. The geometric mean, �̅�𝑖, for a flow interval can be computed as: 

 �̅�𝑖 = √(𝑄𝑖,𝑙)(𝑄𝑖,𝑢) (9) 

where: 

𝑄𝑖,𝑙   the low value of the flow interval 

𝑄𝑖,𝑢   the high value of the flow interval 

 

Use of the geometric mean lacks transparency and creates an interdependency between plotting 

position and distribution fitting that can force a user to make a tradeoff. Tradeoffs are commonly 

encountered when using paleoflood data, which can include evidence of a pre-historic flood 

called a paleostage indicator (PSI) or evidence of an absence of flooding called a non-

exceedance bound (NEB). Flow intervals are typically used to model a PSI with a corresponding 

perception threshold. Perception thresholds are typically used to model a NEB. The 

interdependency occurs because both the parameter and plotting position estimates are a function 

of the low and high flow values. In certain cases, the user must manipulate the low and high 

values or the corresponding perception threshold value to obtain the desired plotting position 

which could have an adverse impact on the parameter estimates. 
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Consider the example shown in Table 1 where there is geologic evidence of a PSI. Both the age 

and discharge needed to define the PSI and corresponding perception threshold are uncertain due 

to various geologic and hydraulic uncertainties. 

Table 1. Paleostage Indicator Example 

Feature 
Age  

(years before present) 

Discharge 

(cfs) 

PSI 

Young 1100 Low 275,000 

Best Estimate 1500 Best Estimate 375,000 

Old 1800 High 425,000 

 

The PSI was included within a flow-frequency analysis as a flow interval observation spanning 

275,000 to 425,000 cfs. A best estimate perception threshold was included as a perception range 

spanning 375,000 cfs to infinity. The perception threshold was applied over a historical period 

corresponding to the best estimate age of the PSI. A chronology plot of this information is shown 

within Figure 7. 

 

Figure 7. Chronology Plot for Plotting Position Example 

Computing the flow-frequency analysis using the current procedure resulted in the information 

contained within Figure 8. Of particular importance is the computed plotting position for the PSI, 

which has an AEP on the order of 0.005 (200-year return period). This result occurs because the 

geometric mean of the PSI flow interval (342,000 cfs) is less than the perception threshold 

(375,000 cfs). The plotting position conflicts with the knowledge that the PSI exceeded all 

thresholds over the 1500-year period of analysis. To obtain the correct plotting position, the user 

must modify the perception threshold value or the PSI flow interval values so that the geometric 
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mean of the PSI interval is greater than the threshold. However, these modifications would 

conflict with the best estimates and would change the parameter estimates.  

 

Figure 8. Example of Erroneous Plotting Positions Using Current Procedure 

We propose modifying the procedure in the software by using a user-specified flow magnitude to 

determine if a flood represented by a flow interval is above or below a threshold and to rank the 

flood. Recomputing the flow-frequency analysis with a specified flow value of 375,000 cfs for 

the PSI results in the information contained within Figure 9.  The resultant plotting position of 

the PSI now has an AEP on the order of 0.0003 (1 in 3000-year return period) consistent with the 

available information. The parameterized LPIII distribution, confidence limits, and expected 

probability curves are unaffected by this change. Only the plotting positions are affected. This 

gives the user more transparency and control to obtain the desired plotting positions without 

needing to manipulate inputs that affect the parameter estimates. 

P
SI
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Figure 9. Example of Correct Plotting Position Using Proposed Procedure 

Expected Probability. Bulletin 17C procedures and supporting software calculate and report a 

computed frequency curve and user-specified confidence interval. The expected flow-frequency 

curve is not calculated or reported. An expected probability adjustment was provided in Bulletin 

17B (Interagency Advisory Committee on Water Data, 1982). However, the Bulletin 17B 

adjustment should not be used because it does not account for the uncertainty in the skew 

parameter. 

The expected flow-frequency curve “can serve as a basis for computing the expected return on 

an investment” (Beard, 1960). A risk informed approach is necessary because it is not possible to 

know the future outcome of an investment decision with certainty. Given a decision and a 

conditional probability distribution of possible outcomes, the expected utility of the decision can 

be expressed by Equation (10). The integral is calculated over a complete set of possible 

outcomes (DeGroot, 2004). 

 𝐸[𝑈𝐷(𝑑)] = ∫ 𝑓(𝑜|𝑑) 𝑈(𝑜) 𝑑𝑜 (10) 

where: 

𝐸[𝑈𝐷(𝑑)] expected utility (U) of a decision (d) 

𝑓(𝑜|𝑑)  probability density of possible outcomes (o) given the decision (d)  
𝑈(𝑜)  utility (U) of an outcome (o) 

 
The optimal (best) decision is the one that maximizes the expected utility. In flood hydrology, 

this concept applies to examples such as maximizing net economic benefits, maximizing cost 

P
SI
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effectiveness of life safety investments, or providing a desired level of protection. The expected 

flow-frequency curve is the optimal estimator in this context and should be used to inform 

decisions in flood hydrology. This can be accomplished by explicitly modeling the uncertainty in 

a stochastic model or by applying the expected flow-frequency curve as a single best estimate in 

a deterministic calculation (USACE, 1994). 

Conceptually, the expected flow-frequency curve is optimal because it includes both the natural 

variability described by the parameters and the knowledge uncertainty described by the ERL 

whereas a computed flow-frequency curve only includes the natural variability component of 

uncertainty (USACE, 2017). Greater knowledge uncertainty due to a shorter ERL results in an 

asymmetrical uncertainty distribution in both the more frequent lower tail and less frequent 

upper tail of a flow-frequency curve. This asymmetry is properly accounted for with the 

expected flow-frequency curve (USACE, 1994).   

The expected flow-frequency curve can be defined by the expected value of the AEP at a given 

value of flow. In Bayesian statistics, the expected flow-frequency curve is referred to as the 

posterior predictive flow-frequency curve. “Bayesian and classical [or frequentist] statistical 

approaches can be used to develop design flood values which, given available hydrologic 

information, will (on average) be exceeded with the specified 1% design probability.” 

(Stedinger, 1983). There are some important philosophical differences between the Bayesian and 

frequentist interpretations of probability. However, these differences are mostly inconsequential 

for the practicing hydrologist.   

Given a probability distribution of annual exceedance probability conditional on a given flow, 

the expected flow-frequency curve can be estimated using Equation (11). 

 𝐸[𝐴𝐸𝑃|𝑄𝑖] = ∫ 𝐹(𝐴𝐸𝑃|𝑄𝑖) 𝑑𝐴𝐸𝑃 (11) 

where: 

𝐸[𝐴𝐸𝑃|𝑄] expected value of the annual exceedance probability (AEP) at a given flow (Qi) 

𝐹(𝐴𝐸𝑃|𝑄) cumulative distribution function of the annual exceedance probability (AEP) at a 

given flow (Qi) 

 

The cumulative distribution function of the annual exceedance probability at a given flow can be 

estimated directly from the confidence intervals of a flow-frequency curve. This method ensures 

that the expected flow-frequency curve is internally consistent with the reported confidence 

intervals. The following procedure is proposed for software implementation. 

1. Compute flows for a range of confidence limits between 0 and 100% and a range of 

AEPs between 0 and 1 to obtain a two-dimensional table of flow as a function of AEP 

and confidence limit. 

2. Invert the table from step 1 using interpolation to obtain a two-dimensional table of AEP 

as a function of flow and confidence limit. 

3. Estimate the integral in Equation (10) using a midpoint Riemann sum for each flow value 

in the table from Step 2 to obtain a one-dimensional table of expected AEP as a function 

of flow. 

4. Invert the table from step 3 by interpolation to obtain a one-dimensional table of flow as a 

function of expected AEP at user specified AEP values. 
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5. Report the resulting set of AEP vs flow values from Step 4 as the expected flow-

frequency curve. 

Figure 10 and Figure 11 show an example of the general concept and proposed procedure to 

estimate the expected flow-frequency curve at a flow of 100,000 cfs for Example 4 (Arkansas 

River at Pueblo, CO) presented in Appendix 10 of Bulletin 17C (England, et al., 2018). The 

expected value of AEP defined by Equation (11) is simply the area under the cumulative 

distribution function shown in Figure 11. Conceptually, the cumulative distribution function can 

be defined by taking a horizontal slice through the confidence limits at a given flow. The 

cumulative probability for a confidence limit corresponds to the value of AEP where the 

horizontal slice intersects the confidence limit. For this example, the horizonal slice at 100,000 

cfs intersects the upper 95% confidence limit at an AEP of about 0.003 which means that 

𝐹(0.003|100,000) = 0.95.  

The computed AEP at 100,000 cfs is about 0.00063 (1 in 1600) and the expected AEP is about 

0.001 (1 in 1000). Due to the nature of the uncertainty asymmetry, the annual exceedance 

probability for the expected flow-frequency curve will always be more frequent than (i.e., to the 

left of) the computed curve for annual exceedance probabilities less than 0.5. As the ERL 

increases, the expected flow-frequency curve will trend toward the computed curve.   

We propose to implement the procedure described above to calculate and report the expected 

flow-frequency curve in software that supports Bulletin 17C. This provides the user with more 

information and options to apply the results of a flow-frequency analysis in a risk-informed 

context.  

 

Figure 10. Example of Concept Used to Develop the Cumulative Distribution Function of 

Annual Exceedance Probability at a Given Flow from the Confidence Limits 
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Figure 11. Example of Concept Used to Estimate the Expected Flow-Frequency Curve from the 

Cumulative Distribution Function of Annual Exceedance Probability at a Given Flow 

Potentially Influential Low Floods. Bulletin 17C procedures and supporting software use the 

Multiple Grubbs-Beck Test (MGBT) to screen for PILFs. As the name implies, PILFs are small 

floods that act as low-outliers whose influence may be detrimental to the fit of the upper tail (i.e. 

the infrequent region) of a flow-frequency curve. The goals of the current procedure are to 

reduce the leverage of these low floods and to accommodate zero flows in a flow-frequency 

analysis. 

By default, the current software will identify PILFs and automatically recode them using a 

perception range. The perception range has a low threshold equal to the Grubbs-Beck critical 

value and a high threshold equal to infinity. A perception threshold is then applied to every year 

in the period of analysis where an existing low threshold value is less than the Grubbs-Beck 

critical value. Identified PILFs are modified and recoded as censored flow intervals with a low 

value of zero and a high value equal to the Grubbs-Beck critical value. Figure 12 shows an 

example of the current automatic recoding procedure for Example 2 (Orestimba Creek near 

Newman, CA) presented in Appendix 10 of Bulletin 17C (England, et al., 2018). The flow 

intervals in the chronology plot on the right are shown to emphasize the recoding of the thirty 

identified PILFs as censored flow intervals based on the Grubbs-Beck critical value of 782 cfs.   
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Figure 12. Depiction of Current Automatic Recoding Procedure for PILFs for Example 2 in 

Bulletin 17C 

The current recoding procedure results in unreasonable values for the EMA computed at-site 

skew MSE, the confidence intervals, and the ERL. To resolve this issue, the current software 

calculates and reports the at-site skew MSE using Equation 6 from Bulletin 17B with the value 

of N set equal to the total number of years in the analysis. An example calculation of the at-site 

skew MSE for Example 2 in Bulletin 17C is shown as Equation (12). This procedure provides a 

more reasonable estimate for the at-site skew MSE. However, the procedure does not resolve the 

corresponding issue with the confidence intervals and ERL. Also, the at-site skew MSE will be 

underestimated to some degree because the assumed value for N is the upper bound based on the 

available information. The actual value of N will always be less than the assumed value when the 

analysis includes censored data. When there is a significant amount of censored data, the actual 

value of N could be significantly less than the assumed value resulting in a significant 

underestimation of the at-site skew MSE.  

 𝑀𝑆𝐸𝐺 = 10[(−0.52+0.30|−0.929|)−(0.94−0.26|−0.929|) log10
82
10

] = 0.132 (12) 

When a user overrides the default option in the current software by manually entering a user 

specified low-outlier threshold equal to the computed Grubbs-Beck critical value, the results 

should be the same. Instead, the current procedure computes and reports the at-site skew MSE 

using EMA. For example, the at-site skew MSE computed using EMA for Example 2 in Bulletin 

17C would be 0.048 if the user manually enters a threshold value of 782 cfs. This is much less 

than the at-site skew MSE of 0.132 that is computed using the default procedure. This EMA 

estimate of MSE corresponds to an effective record length for the at-site skew on the order of 

350 years which is obviously impossible given only 82 years of total record length. 

More reasonable values for the at-site skew MSE using EMA along with more reasonable 

confidence intervals and ERL estimates can be obtained by only adding perception thresholds for 

years with an identified PILF. We propose modifying the automatic recoding procedure to obtain 

a result like Figure 13 for Example 2 in Bulletin 17C where only the thirty identified PILFs are 

recoded using a perception range with a corresponding censored flow interval. 

User Inputs Result of Current Automatic Recoding Procedure
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Figure 13. Depiction of Proposed Automatic Recoding Procedure for PILFs for Example 2 in 

Bulletin 17C 

Table 2 shows a comparison of the results obtained for three different options. The first option is 

the current procedure that adds perception threshold(s) over the entire period of analysis and uses 

Equation 6 from Bulletin 17B with NG=NT to calculate the at-site skew MSE. The second option 

is the current procedure with a manually entered threshold equal to the Grubbs-Beck critical 

value which uses EMA to calculate the at-site skew MSE. The third option is the proposed 

procedure that only recodes identified PILFs with a perception range and calculates at-site skew 

MSE using EMA. 

Table 2. Comparison of PILF Recoding Options for Example 2 in Bulletin 17C 

Parameter Option 1 

Current Procedure 

Option 2 

Current Override Procedure 

Option 3 

Proposed Procedure 

NS 52 52 52 

NT 82 82 82 

MSEG 0.132 0.048 0.136 

NG 82 350 79 

𝑉𝑎𝑟[�̂�0.99] 0.00879 0.00879 0.0227 

ERL0.99 220 220 71 
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Results for this example suggest that Option 3 should be the preferred option because it is the 

only option that obtains realistic values for the at-site skew MSE and the ERL given the available 

information. The value of the at-site skew MSE and the corresponding value of NG for Option 1 

are reasonable but not as reasonable as Option 3. Some information is lost when the PILFs are 

censored which should result in N<NT and a larger at-site skew MSE. The value of at-site skew 

MSE and the corresponding value of NG for Option 2 are not realistic given the available 

information. An effective record length for the at-site skew on the order of 350 years is not 

possible given only 82 years of total record length. For the same reason, the value of ERL0.99 for 

Option 1 and 2 is not realistic. Only Option 3 provides a complete set of plausible values that are 

consistent with the available information. Similar results and conclusions can be obtained with 

Examples 3, 5, and 6 in Bulletin 17C. 

CONCLUSION 

Research and documentation related to the findings presented in this paper is ongoing. Some of 

the proposals have already been implemented within the USACE HEC-SSP software while 

others are still being evaluated and tested. Discussions with USGS are underway to collaborate 

on this research with the goal of reaching consensus on future revisions to both the HEC-SSP 

and PeakFQ software. 

The five proposed changes to the Bulletin 17C implementation procedures are summarized 

below.  

1. Use Equation 7-10 in Bulletin 17C to estimate the expected moment for weighted skew. 

This replaces the use of Equation 7-3 and the weighted skew equation. 

2. Calculate and report an average effective record length for a range of user specified AEPs 

for use in stochastic modeling. The method for estimating ERL assumes a practically 

linear relationship between record length and quantile variance. 

3. Use a user specified flow value for plotting positions associated with a flow interval to 

provide more user control and transparency. This replaces the use of the geometric mean 

of the low and high flow values. 

4. Calculate and report the expected flow-frequency curve by integrating over the computed 

confidence intervals. This provides more information and options for the user. 

5. Change the automatic recoding of PILFs to only apply a perception threshold in years 

having an identified PILF. This provides a more reasonable estimate of the at-site skew 

MSE, confidence intervals, and ERL. 

Our goal is to motivate collaboration with other interested developers, practitioners, and 

organizations to continue making incremental improvements to the Bulletin 17C procedures and 

associated software. 
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