Statistical Software Package (HEC-SSP)

Overview

- Provide a brief history of HEC-SSP.
- Demonstration of HEC-SSP.
 - Import, inspect, and manipulate data
 - Create, compute, and visualize results of various analyses
- Detail DSS usage and conventions within HEC-SSP.

History, Status, Future...

- HEC-FFA, STATS, and REGFRQ developed by HEC in response to Corps statistical needs in 1970's
- Evolved with addition of new capabilities and platform support
- In late 1980's, HEC-FFA, STATS, and REGFRQ reconfigured for PC and UNIX

History, Status, Future...

- HEC-SSP started development in FY2005
 - ► Gary Brunner, Beth Faber, Jeff Harris, and Matt Fleming
- Version 1.0 Beta (Released June 2006)
 - Only computation is Bulletin 17B analysis
- Version 1.0 (Released August 2008)
 - Included General Frequency and Volume Frequency analyses
- Version 1.1 (Released April 2009)
- Version 2.0 (Released October 2010)
 - Included Duration, Coincident Frequency, and Curve Combination analyses
- Version 2.1 (Released August 2016)
 - Included B17C/EMA methodology and Balanced Hydrograph analysis
- Version 2.1.1 (Released January 2017)
 - Updated USGS Plugin and recompiled EMA Fortran code
- Version 2.2 (Released June 2019)

Updated EMA code, Mixed Population, and Distribution Fitting analyses

History, <u>Status</u>, Future...

	_	_		

H&S Division Lead
Lead Developer / Project Lead
Development and Application
Development
Development
Development
Development

Matt Fleming Mike Bartles Beth Faber Greg Karlovits Will Lehman Haden Smith John England Mark Ackerman Paul Ely Caleb DeChant

History, Status, Future...

New analytical tools to meet Corps needs

- Updated Distribution Fitting Analysis
- Updated Bulletin 17 Analysis
- New Correlation Analysis
- New Record Extension Analysis
- Improved user experience
 - Easier data input

HEC-SSP Software

Data Importer

- New Import Wizard or Traditional Import
- Import Time Series and Paired Data
- DSS, USGS website, manual entry, Excel, and text files

Dat	Correlation Analys	is	
	New	>	Using Import Wizard
	Sort	2	Traditional Import
🖻 🔂 🕅	Select Working	g Set >	
	New Folder		
1	Remove		
Data	Select		

Data Importer USGS Website

Import From USGS Data			_
Data Type Annual Peak Data Daily Instantaneous (15-min, hourly)			
Fetneve Data For Flow Stage			
Station ID's O Do Not Get USGS Station ID's by State Get USGS Station ID's by State Get ID's for State States Retrieved:	te		
		Back Next > Cance	

BUILDING STRONG_®

Data Importer Multiple State Searches

port From USGS Data						
tates Retrieved: CT, MA, NH, VT						
ata Type: Annual Peak Da	ata					
etrioving: Flow						
ceuteving. Flow						
		Select All Deselect All	Clear Table			
ISCS Mabrita						
Import	11909	Basin Name	Location	1	Other Qualifier	
Data	Station ID's	(A Part)	(B Part)		(F Part)	
Data	Citation 10 0	*connectiout*			(i i dity	
		"connecticut"				
	01184000	CONNECTICUT RIVER	THOMPSONVILLE, CT	USGS		/
	01190070	CONNECTICUT RIVER	HARTFORD, CT	USGS		
	01193000	CONNECTICUT RIVER	MIDDLETOWN, CT	USGS		
	01193050	CONNECTICUT RIVER	MIDDLE HADDAM, CT	USGS		
	01194750	CONNECTICUT RIVER	ESSEX, CT	USGS		
	01194796	CONNECTICUT RIVER	OLD LYME, CT	USGS		
	01194825	CONNECTICUT RIVER	OLD SAYBROOK, CT	USGS		
	01167000	CONNECTICUT RIVER	TURNERS FALLS, MA	USGS		
	01170500	CONNECTICUT RIVER	MONTAGUE CITY, MA	USGS		
	01172000	CONNECTICUT RIVER	HOLYOKE, MA	USGS		_
	01172003	CONNECTICUT RIVER BELOW PO	HOLYOKE,MA	USGS		_
	01172010	CONNECTICUT R	I-391 BRIDGE AT HOLYOKE, MA	USGS		
	01128500	CONNECTICUT R	FIRST CONN LK NR PITTSBUR	USGS		
	01129200	CONNECTICUT R BELOW INDIAN	PITTSBURG, NH	USGS		
	01129500	CONNECTICUT RIVER	NORTH STRATFORD, NH	USGS		
	01129850	CONNECTICUT RIVER TRIBUTARY	STRATFORD, NH	USGS		`

10

U.S.ARMY

Background Maps

- Background Maps are Optional
- Types of Map Layers:
 - Internet Maps (Google, Bing, OSM), Shapefiles, rasters, Google Earth .kml, etc
- Gage Locations displayed on top
- Map is interactive for Editing Data and Viewing Results

Example Background Map

HEC-SSP 2.3 - SSP_demo

S.ARM

12

BUILDING STRONG_®

13

14

U.S.ARM

BUILDING STRONG_®

Daily Average Flow

Annual Maximum Daily Average Flow

Data Filtering

17

- Filter data using:
 - Time Window
 - Season
 - Min/Max Threshold
 - Duration
 - Annual Maxima
 - Peaks Over Threshold
 - Starting Pool Stage/Elev

Data Storage System (DSS)

Data is stored within the file in "blocks", for example:

- Time Series (hourly data stored in months)
- Paired Data (flow vs stage curve w/ single stage axis and multiple flow axes)
- Gridded (single radar scan)
- Multiple blocks may make up a single "data set", e.g., 50 years of hourly data is one data set
- Each block is called a "record"
- A HEC-DSS file can have many records
- Name of a record is called a "pathname"
- Each pathname within a file must be unique

Time Series Data | Pathnames

- Pathname self-documents the data
- Consists of 6 parts, separated by forward slashes "/"
- Parts are labeled A F: "/A/B/C/D/E/F/"
- Each part can be 0 to 64 characters long
- A single pathname can be up to 391 characters long
- Example:
 - /SACRAMENTO/RED BLUFF/FLOW/01MAR1972/1HOUR/OBS/

Time Series Data | Pathnames

/A/B/C/D/E/F/

- Part Description
 - A Group, basin, river, region or study name
 - B Location or gage name
 - C Data parameter
 - D Starting date for block (not 1st data)
 - E Time interval (standard)
 - Version or additional information

F

/SACRAMENTO/RED BLUFF/FLOW/01MAR1972/1HOUR/OBS/

DSS Conventions

- Use optional part names
- Be descriptive, but not "overly" descriptive
- Please do not do this: "///FLOW/01JUN1972/1HOUR//" (i.e. no A-, B-, or F-parts)
- Instead, do this: "/BALD EAGLE CREEK/SAYERS/FLOW/01JUN1972/1HOUR/COMPUTED/"

Time Series Data | Interval

- Each record contains a "header"
 - ► Data Units (e.g., FEET, CFS)
 - ► Data Type:
 - PER-AVER Period Average (daily average flows)
 - INST-VAL Instantaneous (15-min flows)
 - PER-CUM Period Cumulative (daily precip accumulation)
 - INST-CUM Instantaneous Cumulative (incremental precip)
 - ► Time offset (e.g., daily data read at 8:00 am)
- Missing data flags (-901.) are used as a place holder

Time Series Data | Regular

Blocks are "standard size" (there are always 365 or 366 values for one year of daily data)

Interval

1MIN, 2MIN, 3MIN, 4MIN, 5MIN, 6MIN, 10MIN, 12MIN

15MIN, 20MIN, 30MIN, 1HOUR, 2HOUR, 3HOUR, 4HOUR, 6HOUR, 8HOUR, 12HOUR

1DAY

1WEEK, TRI-MONTH, SEMI-MONTH, 1MON

1YEAR

Block Length

One day

One month

One year

One decade

One century

Time Series Data | Irregular

- Same as regular-interval, except:
- Date and time store with each data value (which makes data sets much larger)
- Blocks (E parts) are:
 - ► IR-DAY
 - ► IR-MONTH
 - ► IR-YEAR
 - ► IR-DECADE
 - ► IR-CENTURY
- Block sizes are (user) variable length. Try to limit sizes between 100 and 1000 values per block

DSS Data within SSP

- Bulletin 17 (and General Frequency) analyses require the use of irregular data sets
 - Please use IR-CENTURY
- Regular data sets will not be selectable
 - If you don't see the data set you just entered, it's because it's not irregular
- Volume Frequency analyses require the use of regular data sets
 - ► Use 1DAY

Irregular data sets will not be selectable

Extracting Annual Maximum or Partial Duration Series

- Download data
- Right-click | Filter Data...
- Select Filter Options
 - Absolute Time Window
 - Seasonal Time Window
 - Min/Max Threshold
 - Filter to Annual Maximums
 - Filter to Partial Duration Series

Calendar Year vs. Water Year

- Within SSP, Bulletin 17 analyses using EMA/B17C require that only one peak be present in any given water year
 - i.e. If the linked DSS data set contains two values in water year 1969 (01Oct1968 – 30Sep1969), your analysis will not compute
- If your watershed has more than one peak in a water year that must be included (i.e. partial duration) or calendar year is more appropriate to use, contact HEC for help

Calendar Year vs. Water Year

28

HEC-SSP Analysis Types

- Eleven Analysis Types
 - Bulletin 17
 - General Frequency
 - Volume-Frequency
 - Duration Analysis
 - Coincident Frequency
 - Curve Combination
 - Balanced Hydrograph
 - Distribution Fitting
 - Mixed Population
 - Correlation

Record Extension

Bulletin 17 Analysis

- "Strict" flow-frequency analysis using either
 Bulletin 17B or Bulletin
 17C procedures
- Can evaluate moving or expanding time windows
- IRREGULAR data required
 - ▶ i.e. IR-CENTURY

Bulletin 17 Analysis

31

V V

General Frequency Analysis

Description

DSS File Na

General Options

100000.0

10000.0

Data Set

- "Less strict" flow-, stage-, precipitation-, etc frequency analysis
 - Mix and match procedures

Numerous analytical distributions

- Product Moments-LPIII
- EMA-LPIII
- Linear Moments-GEV
- etc
- Manually define distribution parameters
- Graphical/Empirical distribution
- Annual or Partial Duration series
- **IRREGULAR** data required

i.e. IR-CENTURY

Volume Frequency Analysis

- Iterative/duplicative frequency analysis
 - Mix and match procedures
- Extract annual maximum series from input data and fit distribution
- Numerous analytical distributions
 - Product Moments-Normal
 - Product Moments-LPIII
 - EMA-LPIII
 - ► etc
- Manually define distribution parameters (i.e. smooth statistics)
- Graphical/Empirical distribution
- REGULAR data required

i.e. 1DAY

Duration Analysis

- Computes Stage- or Flow-Duration
 - i.e. percent of time stage/flow was in excess of a certain value
- Rank/Sort and STATS (i.e. bin) methods
- Annual, Quarterly, Monthly, or User-Defined Periods
- REGULAR data required
 - ► i.e. 1DAY

Curve Combination Analysis

35

- Graphically-define an empirical distribution
 for two or more input
 frequency curves
 - i.e. best-fit pool stagefrequency curve
- Results from other analyses can be imported
 - Bulletin 17, General Frequency

Coincident Frequency Analysis

36

- Uses Total Probability Theorem to compute a frequency curve that is a function of two variables (A and B)
- Two conditions are available:
 - Variable A and B are independent
 - Variable A and B are not independent
- Variable A
 - Flow- or Stage-Frequency Curve
- Variable B
 - Index Points from Flow- or Stage-Duration Curve
- Response Curves
 - Variable A results for each Variable B
 - Can have different Variable A for each Response Curve

Coincident Frequency Analysis

Mixed Population Analysis

- Uses Total Probability Theorem to compute a frequency curve from two or more different runoff/causative mechanisms
 - i.e. rainfall-only vs rain-on-snow vs snowmelt-only vs tropical storms
 - annual maximum series cannot be fit using the same analytical distribution
 - resultant empirical distribution takes into account the relative probability of a flood occurring in any year due to any of the input runoff mechanisms
- Results from other analyses can be imported
 - Bulletin 17, General Frequency

Balanced Hydrograph Analysis

39

- Computes hydrograph shapes that have been modified to contain specific exceedance flow rates/volumes across one or more durations
- Results from other analyses can be imported
 - Bulletin 17, General Frequency, Volume Frequency
- REGULAR data required
 - ▶ i.e. 1DAY

Distribution Fitting Analysis

40

- Have you ever wondered what 19 analytical distributions look like when fit to the same data set?
- How much uncertainty is due to the choice of analytical distribution?
- IRREGULAR, REGULAR, and PAIRED DATA accepted
- Can be used for flow, stage, precipitation, wind speed, wind direction, flood/event seasonality, etc

ame:	Distribution Fittin	ng Test 22								
escription:	Sinnemahoning	Creek Daily Flow	using Time Wind	low, Seasonal, a	and Peaks Over Thresh	old Filtering Examp	le			
ata Set:	Sinnemahoning	Creek-Daily								✓ ¥ ¥
99 File Name		OD/Desite sta (Te att	1000 Europeantes () de					
Soon ne Manne.	C./PROJECTS/S	SP/Projects/Test/	SSP_Examples/s	SP_EXAMPLES	5.QSS					
Report File:	C:\PROJECTS\S	SP\Projects\Test\	SSP_Examples\E	DistributionFittin	g\Distribution_Fitting_T	est_22\Distribution	Fittin	g_Te	st_22.rp	ot
Data Analysis*	Results									
Distribution Fil	ter	Distribution Fitti	ng Methods		Goodness of Fit Test			k	1.0	
O Filter Usin	g Parameter	Product Mor	ments (PM)		Kolmogorov-Smirnov	(Test Statistic) 🗸		0		
O Finder O ann	g . crameter	- roduct mor	include (r my		gerer entitiet			4		
Display All	Distributions	L-Moments	(LM)		Goodness of Fit Su	mmary Statistics				
		Maximum Li	ikelihood Estimat	ion (MLE)					0.8	
Distribution Fitting Test 22* ame: Distribution Fi escription: Sinnemahoni ata Set: Sinnemahoni ata Set: Sinnemahoni SS File Name: C:/PROJECTS eport File: C:/PROJECTS ata Analysis* Results Distribution Filter O Filter Using Parameter O Filter Using Parameter O Filter Using Parameter O Filter Using Parameter Distribution Distribution Distribution Dis		Median	Confidence	Expected Probability	Kolmogorov- Smirnov	Accept			È 0.6∙	
		Curve	Limits	Curve	(Test Statistic)	Distribution			pat	
eneralized Pare	eto (LM)		0	0	0.043	0	^		2	
Pearson III (PM)			0	0	0.043	0			<u>.</u>	
hifted Gamma ((PM)		0	0	0.043	0		:	ë 0.4∙	
eneralized Pare	eto (PM)		0	0	0.055	0			a)	
hifted Exponent	tial (LM)		0	L Q	0.057	0			¥	
Seneralized Pare	eto (MLE)		<u> </u>	L Q	0.059	L Q				
og-Pearson III (LM)		<u> </u>		0.062				0.2	
.og-Pearson III (PM)	<u> </u>	<u> </u>	<u> </u>	0.072	<u> </u>				
initted Exponent	ual (PM)			\vdash	0.073					
Seneralized Extre	eme value (LM)			+	0.077					
Seneralized Extre	errie value (MLE)				0.077				0.0	
Pearson III (MLE)				0.080					0 0.2 0.4 0.6 0.8 1
Shifted Commo	(MLE)			<u> </u>	0.107					Observed - Probability
Sumbel (MLE)	(- ă	t ŏ	0.107	- X				
Seneralized Logi	istic (MLE)		ŏ	1 X	0.105	- X			Δ	Pearson III (PM) Data Shifted Gamma (PM) Data
n-Normal (MI F)		ŏ	t ŏ	0.117	ŏ				Generalized Extreme Value (LM) Data O Generalized Logistic (LM) Data
n-Normal (PM)	/		ŏ	ŏ	0.117	ŏ				Generalized Pareto (LM) Data Log-Pearson III (LM) Data
.og10-Normal (M	MLE)		ŏ	Ŏ	0.117	Ŏ				Shifted Exponential (LM) Data Best Fit Line
.og10-Normal (F	PM)		Õ	Ō	0.117	Ō	1			
Seneralized Extre	eme Value (PM)		Ō	Ō	0.119	Ō	¥			Plot Type
	dian Curves 🗌									○ CDF ○ PDF ● PP Plot ○ QQ Plot ○ CDF - Plotting Position
Display All Med					a the terms of the second					

41

43

BUILDING STRONG_®

44

BUILDING STRONG_®

Distribution Fitting Analysis Results Tab

ame:	Distribution F	itting Test 22									
scription:	Sinnemahoni	ing Creek Daily F	low using Time Window,	Seasonal, and Peaks Ov	er Threshold Filtering	; Example					
ta Set:	Sinnemahoni	ing Creek-Daily									
S File Name:	C:/PROJECTS	S/SSP/Projects/T	est/SSP_Examples/SSP	EXAMPLES dss							
eport File:	C:\PROJECTS	S\SSP\Projects\T	est\SSP_Examples\Distri	butionFitting\Distribution	Fitting Test 22\Dist	tribution Fitting 1	Fest 22 mt				
ata Analysis	* Results*										
tatistics				d Decede (LU)							
			Selected Distribution: Ge	neralized Pareto (LM)	Cooderses				-		
Statistic	Val	ue	Distribution Paramete	is .	Goodness of Fit			ì	250,000-		
Demale Oiss	Original Data	Filtered Data	Parameter	Value	Kolr	mogorov-Smirnov		<u> </u>			1
Sample Size	28269	8780.000	Loctn	8665.310	(Test Statistic)					
Max	44000,000	36000.000	Scale	4146.730			0.043		200.000		i
Median	581.000	11750.000	Snape	-0.070							
Mode	1100.000	11800.000									1
			Frequency Curves						150,000 -		
			Percent	Median	Expected	Confidence	Limits		6		11
			Chance	Curve	Probability	Flow			2		
F	Product Moment	S	Exceedance	Flow	Flow	in cfs		1	<u> </u>		///
Statistic	Original Data	Filtered Data		in cfs	in cfs	0.05	0.95		100,000 -		
Mean	1148.277	13109.286	0.001	80575.3	161302.9	250035.5	33725.1				
Standard Dev	1749.434	4682.193	0.01	01401.6 45076 1	87041.6	74/93.4	28549.5				
Kurtosis	55 889	6 294	0.2	40617.9	43776.1	61850.5	27350.8		50,000-		4
0000	00.000	0.2.04	0.5	35032.8	36155.1	48400.0	25519.7			Currier Currier	
			1.0	31029.6	31360.8	40091.0	23999.8				
			2.0	27207.7	27182.1	33133.0	22124.5			O COMPANY AND A	
			5.0	22419.9	22311.3	25/44.3	19323.0		0		1 0.00001
I	L-Moment Ratios	5	20.0	15711.7	15693.3	17209.7	14324.7		0.995	55 0.55 0.5 0.5 0.1 0.01 0.00	0.00001
Statistic	Original Data	Filtered Data	50.0	11607.3	11592.6	12346.5	10968.1		D D: 1	Exceedance Probability	
-Mean	1148.277	13109.286	80.0	9597.6	9588.9	9924.9	9319.8		O Data (I Genera	(MEDIAN protong positions) ralized Pareto (LM) Distribution	
L-CV	0.604	0.175	90.0	9103.8	9099.9	9388.5	8845.3		Genera	ralized Pareto (LM) Expected Probability	
L-SKEW	0.490	0.304	99.0	8707.0	8592.4	9007.7	8404.7		Genera	ralized Pareto (LM) 5.0 Percent Confidence Limits	
L-Multosis	0.232	0.100		0101.0	0002.1		0101.1		Genera	ralized Pareto (LM) 95.0 Percent Confidence Limits	
									- Pl	lot Type	
									0		
]				
Plot Options	View Repo	ort								OK Cancel	Apply

45

Correlation Analysis

- Compute the amount of correlation between various data sets
 - Tributary peak flow vs. mainstem stage
 - 3-day precipitation accumulation vs. 3-day average temperature
 - Annual maximum SWE vs. annual maximum 24-hour precipitation accumulation
- Results from B17 analyses can be imported
- IRREGULAR and REGULAR data accepted

Correlation Analysis

47

Record Extension Analysis

48

- Extend a short record using a longer record
- Multiple computational methods
 - Ordinary Least Squares
 - MOVE.1
 - MOVE.2
 - ► MOVE.3
 - ► MOVE.4
- Results can be used within B17 analyses to infer flow-frequency for the extended record
- IRREGULAR and REGULAR data accepted

Record Extension Analysis

me:	Sinnemahoning									
scription:										
S File Name:	PROJECTS/SSP/Projects/Re	ecordExtension_exam	oles/RecordE	xtensionResults/Sinnem	ahonii 📐					
port File:	PROJECTS\SSP\Projects\R	ecordExtension exam	ples\Record	ExtensionResults\Sinner	nahoni					
nerel Data	Decord Extension									
neral Data	Record Extension									
	Complete Record		k	100.000		Sinnemahoning D	ata Plot			
Statistic	Y (Sinnemahoning)	X (Sterling Run)	Q							
lumber of Valu	Jes 80	104								
lean (of log)	4.249	3.931				-		<u> </u>		
ariance (of log	0.051	0.064						8		
td Dev (of log)	0.227	0.252					<u>\$</u>			
kew (of log)	0.394	0.377					0			
	Concurrent Record						0			
Statistic	Valu	16	(s							
iumper of Valu	les	08	g (ct		0					
inear Correlat		0.941	onin	10,000			<u> </u>			
Statistic	Y (Sinnemahoning)	X (Sterling Run)	nah							
lean (of log)	4.249	3.954	Juer							
ariance (of log) 0.051	0.069	Si		0					
td Dev (of log)	0.227	0.263								
kew (of log)	0.394	0.356								
	Non-Concurrent Record									
Statistic	Y (Sinnemahoning)	X (Sterling Run)								
lumber of Valu	Jes 0	24								
lean (of log)	0.000	3.857								
ariance (of loc	g) 0.000	0.040								
ananoo (on rog	0.000	0.200		1,000						
td Dev (of log)		-0.226		1,000		10,0	00		100,0	00
itd Dev (of log) kew (of log)	0.000									
itd Dev (of log) kew (of log)	0.000					Sterling Run	(cts)			

49

Record Extension Analysis

ime:	Sinnemahoning														
scription:															
S File Name:	PROJECTS/SSP/F	Projects/RecordEx	tension_ex	am	ples/RecordExtensi	onResults/Sinne	emahor	nii 📐							
port File:	PROJECTS\SSP\	Projects\RecordF	dension e	xam	inles\RecordExtens	ionResults\Sinn	emaho	ni							
	Depard Extension														
eneral Data	Record Extension														
/ear	Sterling Run (Sinnemahoni	Extend?		Matalas-Jacob	s Estimators				Record	Extension PI	ot for Sinnen	nahoning		
914	8340.0	16922.1		~	Statistic	Value	0	70,00	T						
915	6090.0	12738.4			Concurrent V	80	4								
916	9800.0	19576.6			MJ-Me	ean									
917	20000.0	37288.2			Statistic	Value		60,00	00-	0	0	0			
918	12600.0	24565.3			Mean (of log)	4.231									
919	7880.0	16076.7			n _e + overlap	100.475					_				
920	8110.0	16500.0			n _e (years)	20.475		50.00	00-						
921	2470.0	5637.7			Variance of M	0.001					0		0		
922	4880.0	10428.5			MJ-Vari	ance									
923	10800.0	21372.3			Statistic	Value		40.00				0		0	
924	7650.0	15652.3			Variance (of I	0.048		40,00	-00	•				0	
925	12700.0	24741.4			Std Dev (of log)	0.219		(S1S)		Ŭ	0				
926	5240.0	11121.0			n _e + overlap	97.468) ≫				° 。			
927	8820.0	17799.4			n _e (years)	17.468		음 30,00	00-	0	0	0		•	
928	9300.0	18672.1			Variance of V	0.000					0	0	0	0 0	
929	7420.0	15226.6			Estimators for A	unmentation				0 0	0	0	0 0	്റ്	
930	5660.0	11923.1			Estimator	Value		20,00	00-0		0 ~	0 0	0 0	<u> </u>	
931	4500.0	9092.2			Intercept (of I	4.170			þ	۵ ^۲ ۰	້ໍຼີ	ွ၀ ၀ွ ၀ွ	စုစ စိုစ	φĞ	
932	4990.0	10640.6			Slope (of log)	0.903					°~ °	。	ంం ం	ింం	
934	3330.0	7384.2						10.00		ഁൟഀഀ൦	<u>م</u> ہے	88	~ °°°		
935	4380.0	9458.4			Sinnemahoning	- Extended R		10,00	Þ	୕ଵୖୖୖୖୖୖୖୖୖୖୖୖୖୖୖୖ		ൣഁൟ൙൦	ഀ൦ഀൟഀഀ	ൟഁഄ	
936	28400.0	61200.0			Statistic	Value			P	8 ° %	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	° °	0000	ຼັ້	
937	8210.0	16683.6			Number of Va	24				0	0	00	00	~ 0	
938	7660.0	15670.7		~	Mean (of log)	4.170			0-	1920 19	40 10	i 60 10	80 20	00	
	Original Data	Extended Data]		Std Dev (of loc)	0.033			North			- 10	Cipportek-	ina	
	in Extended Record	d to New Date Re			Skew (of log)	-0.226			Sinne	ing Kuli Amahoning- Evi	tended	0	Sinnemanor	inig	
Sa	ve Extended Recor	u to New Data Se			Silver (or rog)	-0.220		1 0 3	anne	and rouning- EX	londed				

50

History, Status, Future...

New analytical tools to meet Corps needs

- Updated Distribution Fitting analysis
- New Bulletin 17 moving/expanding time window
- New Correlation Analysis
- New Record Extension Analysis
- Improved user experience
 - Improved data entry
 - Separate DSS files for each analysis
 - Button to view/open DSS file
 - Button to plot/tabulate selected data set

Summary

- Currently contains nine different statistical analyses
 - Future versions will include two additional analyses
- Developed primarily to meet USACE needs
- If you have ideas for future enhancements or questions about existing features, let us

