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Preface

This study was performed at the request of Huntington District, U.S. Army Corps of
Engineers. The purpose was to evaluate water quality impacts associated with supplying
whitewater releases on the Russell Fork of the Big Sandy River, a tributary to the Ohio River at
Kenova, West Virginia.

In March 1996, discussions between George Kincaid (Huntington District) and R.G.
(Jerry) Willey from the Hydrologic Engineering Center (HEC) led to the opinion that the HEC-
5Q computer model would be an appropriate tool for the objective of this project. In April, funds
were provided in response to a scope of work prepared by HEC.

A study team was immediately formed with Jerry Willey as team leader. Vince
Marchese, Tim Curran, Phillip Anderson, and George Kincaid, all of the Huntington District,
were very generous in suppling the data required for input preparation. Advice and assistance on
the input to and the results from the HEC-5 model were provided by Richard Hayes and Marilyn
Hurst (HEC). Assistance with regression analysis and editing were provided by Cameron
Ackerman (HEC). Graphics assistance was provided by Alfredo Montalvo and Anthony Novello
(HEC). Field inspection assistance was provided by Vince Marchese and Rich Meyer
(Huntington District).

The study was conducted under the general supervision of Arlen D. Feldman, Research
Division Chief, and Darryl W. Davis, Director of HEC.

iii






BIG SANDY RIVER
WATER CONSERVATION AND WATER QUALITY STUDY

1. Introduction

The Big Sandy River drains 4,283 square miles of watershed within portions of
Kentucky, Virginia, and West Virginia. The Big Sandy River is formed by the junction of Tug
and Levisa Forks at Louisa, Kentucky and flows in a generally northern direction for 26.8 miles
to its junction with the Ohio River at Kenova, West Virginia. There are six Corps of Engineers’
flood control lakes in the Levisa Fork drainage. There are none in the Tug Fork. The flood
control lakes are North Fork of Pound River Lake (not included in this study other than as inflow
to Flannagan), John W. Flannagan Reservoir, Fishtrap Lake, Dewey Lake, Paintsville Lake, and
Yatesville Lake, in downstream order. Yatesville Lake was the latest flood control lake
constructed and it started discharging flow in April 1991. The releases from the flood control
lakes impact the water quality on the Pound River, Russell Fork of the Levisa Fork, Levisa Fork,
Johns Creek, Paint Creek, Big Sandy River, and Blaine Creek, in downstream order. This stream
system is shown in Figure 1.
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Figure 1. Big Sandy River Basin Map.



On April 1, 1996, the Hydrologic Engineering Center was requested by the U.S. Army
Corps of Engineers Huntington District to apply the HEC-5Q computer model (HEC 1996) to the
Big Sandy River basin described above.

2. Study Objective

The purpose of this study was to evaluate the Big Sandy basin-wide impact on water
quality (water temperature and dissolved oxygen) due to providing whitewater releases to the
Russell Fork from Flannagan Lake. In addition to the quantitative assessment of the Big Sandy
River system, the District requested a qualitative assessment of the water quality impact on the
Ohio River at the confluence with the Big Sandy River. It was decided that the scope of this
study’s dissolved oxygen (DO) calculations would include only the demand for oxygen from
BOD (Biochemical Oxygen Demand). It was concluded that other parameters like algae and
nutrients were beyond the scope of this study.

3. Physical Description Data

The physical description provided above and quantitative information from the pertinent
data sheets in the five reservoir regulation manuals were used to define the river system control
points and river mile identification. These were then used to develop the basin schematic shown
in Figure 2 and for preparing the HEC-5Q input data.

Other data from the reservoir regulation manuals was used to prepare HEC-5Q input
involving each reservoir’s physical description including elevation/storage/surface area tables
and elevation/outlet discharge capacity tables. Data on reservoir elevation/width near the dam
and stream cross-section descriptions were provided by the Huntington District.

4. Time-Series Data

From an assessment based on Huntington District expertise involving historical
meteorological and hydrological data, three study years were selected for use in the calibration of
HEC-5Q. Two dry years (1987 and 1988) and one wet year (1994) were selected. The three
years were selected based on the hydro/meteorological range of conditions provided for the
calibration of the model but, also, for the amount of existing water quality data available within
the reservoirs and at the stream control points.

The meteorological data were obtained from EarthInfo Inc. and is called NCDC Surface
Airways Data (EarthInfo 1994/1995). The vendor provides the data for the period of record on a
compact disc (CD) for a specified regional area. After a search of stations available in Virginia,
West Virginia, and Kentucky, the closest stations to the Big Sandy River basin were determined
to be Beckley and Huntington in West Virginia, and Jackson in Kentucky. Jackson was chosen
as the most representative weather station for the Big Sandy River projects based on proximity to
the upper basin reservoirs.
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Figure 2. Schematic of the Big Sandy River Basin.

Hydrological data were provided by the Huntington District in the HEC-DSS database
(HEC 1995). These data were available for reservoir inflows, releases, and pool elevations.
Reservoir water quality inflow and release concentrations and reservoir water quality-depth
profile data were also provided by the District.

5. Data Manipulation

The meteorological data were preprocessed by the HEC programs WEATHER and
HEATX. WEATHER reads the hourly data exported from the EarthInfo CD in a CD144 format
and modifies the format for input to the HEATX program. HEATX calculates the equilibrium
temperature (shown in Figures 3 and 4 for the three study years), the heat exchange coefficient,
and solar radiation. These results plus wind data are output for each time step in an appropriate

format for HEC-5Q.



The other data that requires the use of a preprocessor is the cross-section data. The
District provided the channel cross-sections in an HEC-2 format. These data were processed
with GEDA to provide a physical description of the channels as horizontal layers including
surface area, hydraulic radius, surface width, and a channel roughness coefficient (Manning’s n)
as a function of elevation. The program output is in the format required by HEC-5Q.
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Figure 3. Jackson, Kentucky Equilibrium Temperatures for 1987 and 1988.
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Figure 4. Jackson, Kentucky Equilibrium Temperatures for 1994.

The hydrological data provided in the HEC-DSS database were converted from hourly to
mean daily using DSSMATH (HEC 1995). Other data provided by the District were entered into
HEC-DSS using DSSITS (HEC 1995), for irregular time-series data or DSSPD (HEC 1995), for
reservoir water quality profile data.

All the other HEC-5Q input data were gleaned from the resources mentioned above or by
Jjudgments based on experience with the application of HEC-5Q.
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6. Model Calibration

The process of calibrating follows the preparation of the input data. It is always a
necessary step for analysis of water quality in an existing reservoir. The purpose is to adjust
several model coefficients in order to best reproduce measured water quality in the reservoir and
at the discharge location. To accomplish this task, a comprehensive understanding of the exact
operation of each project is necessary. Data is required for each project on the discharge quantity
and quality, reservoir pool level, and reservoir water quality-depth profiles on several days
during the year (especially during the summer stratification period).

The results of the calibration of the HEC-5 water quantity model are shown in Appendix
A. The reservoir inflow, discharge, and reservoir storage were provided by the District. HEC-5
performs a hydrologic balance of continuity to calculate a release quantity. The computed
release and the computed reservoir storage are compared to the observed values. The
reproduction is satisfactory for water quality calculation purposes.

The calculation procedure was modified for Yatesville calibration. When the procedure
described above was used, the Yatesville reservoir pool experienced wild variations in the
calculated pool levels. It was assumed to be caused by the extremely small observed discharges
(less than a few cfs). To maintain the observed pool, it was necessary to calculate a discharge
that would reproduce that level. The result was to allow a significant difference between
observed and calculated discharges in order to maintain the observed pool. The significance of
solar radiation heating on the reservoir surface was considered to have a more important impact
on the Big Sandy basin than the error in the discharge quantity. The channel flow routing is
calibrated to best reproduce downstream flows at control points having gaged flow data.

A list of items (both input data and model coefficients) adjusted during the water quality
calibration is shown in Table 1.

The HEC-5Q input requires inflow water temperatures and DO concentrations. The
reservoir with the most measured data is Paintsville. Even at this site, measured data was
available on only two of the three study years. Other reservoir’s inflow water quality data were
measured with less regularity. This shortage of regularly measured inflow data has required a
quantitative method as an optional input in HEC-5Q for estimating the data on a daily basis.

Since daily meteorological data is required in a water quality model, the estimation
technique is a numerical scheme relating Jackson’s equilibrium temperature to each reservoir’s
inflow water temperature. Regression equations were developed with a spreadsheet between
these two parameters at various sites with measured data. Where sufficient data did not exist at
one site for a meaningful relationship, data from more than one site in a region were used in
combination. The graphical results of these regression analyses are shown in Appendix B in the
order discussed below. The numerical measure of correlation, R?, ranges from 81-91%. The
sensitivity of switching equations was found to be minimal. Therefore, the equation used at a
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given reservoir inflow site was chosen based on a combination of geographical location,
elevation, and amount of available data.

Flannagan Lake inflow temperature is a function of the regression equation derived from
data at Haysi, Virginia. Fishtrap Lake uses the equation derived from the data collected above
the project on the Levisa Fork at Big Rock, Virginia. Dewey Lake uses the equation from the
data collected at Meta, Kentucky. Paintsville Lake has three discrete inflow tributaries. The first
and second use equations derived from data collected on two separate drainage channels into
Little Paint Creek. The third uses an equation from data collected on the Open Fork channel
combined with the data from the other two. Yatesville’s data was sufficiently lacking in number
of samples available. Therefore, Yatesville Lake uses an equation derived from data collected
above the projects at Fishtrap, Dewey and Yatesville, and data collected at Meta, Kentucky. Tug
Fork tributary temperatures use the equation derived from data at Fort Gay, West Virginia.

The resulting equation used for each reservoir is shown as TMPIN in a coded format in
Table 1. The code for TMPIN consists of the regression constant (intercept) times 100 rounded
to the nearest ten, plus the regression coefficient (slope) rounded to the nearest tenth. For
example, a code of -060.75 is an intercept of -.060 and a slope of 0.75. The TMPIN value has
been empirically adjusted by -2 to -3.7 degrees Celsius from the appropriate regression equation
in Appendix B to best reproduce the amount of heat in the reservoir. For example, the equation
from the Fishtrap inflow data has been adjusted to provide inflow temperatures that are cooler
by 3.7 degrees Celsius. The adjustments for the other reservoirs are as follows: Flannagan is 3.0,
Dewey is 3.5, Paintsville is 2.0 (all three tributaries), and Yatesville is 3.0.

The measured DO data, during 1987, 1988, and 1994, at these same sites was converted
to percent saturation using the corresponding water temperature for each day of measurement and
then averaged over the study periods. The DOIN is shown in Table 1. DOIN ranges from 93-
98% at the three upstream reservoirs to 75% at the most downstream reservoir.

The BODIN shown in Table 1 was determined empirically by an interactive process to
best reproduce both the DO-depth profile and the release DO from each reservoir. The necessary
seasonal changes are shown vertically for a given calendar date. Interpolation between values is
used within the model. Where more than one value is shown per date, each value represents a
different study year in chronological order. Values used should not be compared exactly with
what would be measured in the field but considered to be a surrogate of the demand required on
the oxygen from all inorganic and organic compounds in the water. Derived values range from
0-15 mg/1 at most locations and seasons, with the exception of 30 mg/1 at Yatesville in the fall.

These three inputs (TMPIN, DOIN, and BODIN) are estimated due to lack of measured
data. The three separate rows of values for Paintsville (CP70) are for the three main tributaries
(CP70A, CP70B, and CP70C) sampled by the Huntington District.



TABLE 1

ESTIMATED LAKE INPUT DATA AND
MODEL CALIBRATION COEFFICIENTS

Cp | TMPIN | DOIN BODIN LIGHT | SDISK Al GSWH A3 GMIN SOD REAIR
# code % sat mg/l % feet E-4 E-6 sq.m/ kg/cu. mg/sq. % sat
sec m/m m/day
130 § -060.75 98 01/1- 4, 4,15 60 12 2 9 -7 030 3000, 80,
04/1- .4, 4,2 2300, 80,
07/1-2,8,2 2600 40
08/1-4,0,0
110 | -040.72 93 01/1-.9, 60 12 2 1. -9 .015 2200, 90
07/1-0, 1800,
09/1-15, 1500
10/1-8
90 | -090.79 97 01/1-1.5, 60 3 .05 1. -7 .035 600 80
05/1 -0,
07/15 -7,
10/1-0
70A | 000.71 80 01/1-0,0,0 50 9 .07, 6. -7 .025 1500, 80
03/1-0,2,0 .10, 1800,
06/1-0,0,0 .09 1600
10/1-9,0,0
70B [ -060.85 92 same as 70A
70C | -030.78 85 same as 70A
30 010.74 75 01/1 -2, 70 18 .06 .03 -8 .140 1500 95
05/1-0,
09/15 - 10,
10/15-3
LEGEND:

CP = Reservoir Control Point

TMPIN = Inflow Temperature Code

DOIN = Inflow Dissolved Oxygen

BODIN = Inflow Biochemical Oxygen Demand
LIGHT = Solar Radiation Absorbed in Top 3'

SDISK = Secchi Disk

Al = Epilimnion & Hypolimnion Diffusion Coef.

GSWH = Reservoir Critical Stability

A3 = Coef. for Calculating Metalimnion Diffusion

GMIN = Reservoir Minimum Stability
SOD = Sediment Oxygen Demand

REAIR = Reservoir Release Rearation




The remainder of Table 1 contains model calibration coefficients. Each of the first six
model calibration coefficients is determined empirically in combination with TEMPIN and each
other. Each value is affected by all the others. LIGHT is the percent of solar radiation that is
absorbed in the top layer (three feet) of the reservoir. The range is shown to be 50-70%, with
most reservoirs using 60%. LIGHT has the tendency to locate most of the heat in the top
reservoir layer. The remainder is transferred vertically with an exponential equation.

SDISK is a surrogate of the spring season secchi disk readings that are measured with a
black and white target disk. It describes the ability to see beneath the surface and affects the
depth of the calculated epilimnion zone. Values of 3-18 feet are shown in Table 1.

The A1, GSWH, A3, and GMIN coefficients are used in the diffusion computations.
Effective diffusion is described as a combination of all energy transferred by eddy and molecular
movement. This mixing concept is exclusive of the mixing caused by advective diffusion.
Advective diffusion is the physical movement of energy caused by the water balance between
layers as the inflow and release are processed. A more comprehensive description of effective
diffusion is provided in the HEC-5Q User’s Manual (HEC 1996). Where more than one value is
shown for a given reservoir, the different values are for each study year, shown chronologically.

The SOD value in Table 1 is a time independent input. SOD is a sediment oxygen
demand and impacts the DO profile, as do the DOIN and BODIN values. The SOD values
obtained by calibration range from 5-1400 mg/sq. m/day. SOD has an impact on the use of
oxygen in every layer of the reservoir.

The REAIR value is a correction applied to the oxygen being released from the dam to
account for the combined reaeration at the discharge valve and in the turbulence associated with
the tailwater area. During field inspection of the tailwater areas, significant reaeration was
observed but the actual values used were derived by calibration.

The results of using the Table 1 values for the reproduction of the reservoir temperature
and dissolved oxygen (DO) profiles are shown in Appendices C and D for each day that
measured data was available at each reservoir. The error of reproduction of the thermal profiles
is generally less than two degrees Celsius. The Paintsville profiles compare the best while the
Yatesville profiles compare the worst. All of them are deemed adequate for the study purposes.

The DO profiles are not particularly good comparisons because the algal photosynthesis
and respiration affect cannot be reproduced with only BOD. They are, however, sufficiently
accurate to be used for the study purposes.

The results for the temperature and the DO release concentrations from each project are
shown in Appendices E and F for all three study years. The reproduction of release temperatures
is quite good. The observed data (those connected with a dotted line) are from short interval
measurement and then averaged to obtain mean daily values. The other observed data points
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represented by a small circle are from spot samples taken sometime during the designated day. It
is inappropriate to connect these discrete values. Also, these values represent the water quality
only for the instant of measurement.

The release DO results are surprisingly adequate, if the several observed spot
measurements less than eight mg/l are discounted. Release DO is usually very close to
saturation. DO saturation is eight mg/] at 27 degrees Celsius. Warmer temperature water has
lower saturation concentrations. DO below eight mg/l is assumed to be an anomaly.

Evaluation of the reproduction of both the profiles and the release quality, together, was
used to determine a best set of Table 1 values.

The results at all tributary junction locations (CP’s 100, 80, 75, 50, 20, and 10) are shown
in Appendices G and H. Locations with measured data show the comparison between observed
water quality and computed water quality. CP’s without measured data show the computed
results only. These reproductions are impacted by the routed release water quality and the input
tributary water quality.

The tributary water quality is unmeasured and, therefore, estimated like the reservoir
inflow water quality to best reproduce the measured data at the stream control points. The
estimated tributary water quality data (TMPIN, DOIN, and BODIN) are shown at the bottom of
Table 2 for each stream control point. The TMPIN values are warmed by zero to three degrees
Celsius using an adiabatic lapse rate to account for the elevation difference from the elevation of
the location associated with the most appropriate (geographical) regression equation.

The DOIN values are averages of the most appropriate (geographically) measured DO
data. The BODIN values are arbitrarily low. The results from the estimated input of these three
parameters are not particularly sensitive.

In general, the computed reservoir temperature profiles are to be construed as an average
for the large portion of reservoir volume near the dam, not necessarily exactly where the
observed profile was measured. With this in mind, the reproductions shown are of an acceptable
level. The DO profiles have much more error than the temperature profiles. In most of the
reservoirs, the observed DO profile shows all the characteristics of algal photosynthesis and
respiration. It was beyond the scope of this study to analyze the nutrients and algae. The
computed DO profiles appear to contain acceptable shape and magnitude to represent the DO
affected by BOD only. Both the temperature profiles and the DO profiles are important only as
they affect the release water quality since one-dimensional modeling cannot be used to represent
the reservoir water quality much upstream of the dam.

The time-series plots of release water quality are within limits of acceptability as are the
control point time-series graphs. The unavailability of any DO data at the control points make
determination of their acceptability questionable. Some field samples were collected during a

10



TABLE 2

ESTIMATED STREAM SYSTEM INPUT DATA

CP TMPIN DOIN BODIN
# code % sat mg/1
100 610.75 96 01/1 -1
80 560.79 96 01/1-.5
75 370.78 86 01/1-.5
50 480.65 83 01/1-1
20 310.74 75 01/1-1
10 310.74 75 01/1-1
LEGEND:

CP = Stream Control Point

TMPIN = Tributary Water Temperature Code
DOIN = Tributary Dissolved Oxygen

BODIN = Tributary Biochemical Oxygen Demand

July 1995 field survey along the mainstem control points to provide some limited confidence in
the general magnitude of summer temperature and DO at those points. This set of reproductions
needs to be carefully interpreted and considered when drawing conclusions about the impact of
the whitewater release on basin-wide water quality from the alternative analysis that follows.

7. Evaluation of Whitewater Alternative

The District’s purpose for this modeling effort was to evaluate the water quality impacts
of a proposed change in discharge operations. The revised release schedule involves discharges
from Flannagan Lake of no more than 800 cfs on each of the first four weekends in October for
whitewater recreation. The primary criterion is a streamflow at the Bartlick, Virginia USGS
gage of between 1100 and 1300 cfs.
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The HEC-5Q would normally be used in an operation mode, as opposed to a calibration
mode, for this type of evaluation. The calibration mode requires input of specified discharges
and other specific operation decisions. The operation mode uses the programmed operation rule
curves to determine an appropriate discharge from each impoundment, instead of the actual
release schedule.

Because the recently enhanced HEC-5Q model is still developmental, the operational
aspects of the code are not completed. In lieu of this capability, the actual release schedule was
simply modified to use the 800 cfs release on the first four weekends in October of each study
year. This mean daily discharge is a very conservative value since whitewater releases are never
continuous for 24 hours. The impacts associated with this conservative release should be
considered extreme.

Appendix I shows the impact of the modified Flannagan releases on the reservoir storage
for each study year. The drawdown associated with the increased releases (even the conservative
mean daily 800 cfs) can be accommodated within the conservation (water quality) pool during
the three study years. Since the study years were selected to include dry and wet periods, it is
assumed that the proposed releases will not adversely impact the reservoir operation for
authorized purposes in other years. The observed condition flow data was modified for the first
four weekends in October of each year to reflect the Flannagan minimum release of 50 cfs
instead of the flows actually released. The actual release was part of a pilot whitewater test.

This change in observed data provides an appropriate comparison of conditions.

The graphical results showing the impact of this release on the Flannagan depth-
temperature and depth-DO profiles are provided in Appendix J. The only observed profiles
during the period of potential impact are on October 20, 1994. The profiles from this date show
the cumulative impact of whitewater releases from the first three weekends. The thermal impact
is less than one degree Celsius from 50 to 170 feet of depth with no measurable impact in the
epilimnion. The DO impact is less than one mg/l except in the metalimnion. The DO impact in
the metalimnion is difficult to evaluate numerically because of the algal problems discussed in
the calibration section of this report.

Appendix K shows the impact of the modified Flannagan release on the discharge
temperature and DO into the Pound River for each of the study years. The thermal impact for the
1987 operation is the release of water temperature about three degrees Celsius above the non-
whitewater release on October 27 with less impact the remainder of the October 3 to mid-
November period. The 1988 operations would have released warmer water of up to six degrees
Celsius. The impact would have started on October 1 and peaked on October 25 with a gradual
decrease in impact to early December. Thermal impact in the 1994 period would have been
considerably reduced to slightly more than one degree Celsius around November 1 with less
effect during the October 1 to mid-November period.
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Also shown in Appendix K are the graphs of DO that result from the whitewater releases.
The impact is insignificant (less than 0.2 mg/1).

The results of the impact of the thermally effected Flannagan releases on the rest of the
basin are shown at each downstream control point in Appendix L. Those impacts are
insignificant (less than 0.4 mg/1) for all three years at CP100 (near Pikeville, Kentucky) and all
downstream locations including the confluence of the Ohio River. Although the changes in the
Flannagan release DO were insignificant, some minor DO impacts at downstream locations can
be seen due to changes in turbulence at the higher releases associated with the whitewater
operation.

In general, the impacts of the whitewater releases on the water quality immediately below
Flannagan are predicted to be minimal with no significant impacts more than a few miles below
the dam.

8. Summary

The Big Sandy River Study was performed to evaluate the possible impacts associated
with making whitewater releases from the Flannagan Lake conservation pool during the first four
weekends in October. Three study years were selected to encompass dry and wet historical
periods.

The amount of the maximum release, 800 cfs, was provided by Huntington District. The
normal low-flow requirement is 50 cfs. The impact is to cause a significant drawdown on the
reservoir pool in October. The drawdown does not impact the reservoir’s authorized purposes.
The reservoir water quality profiles (temperature and DO) are affected slightly and the water
temperature of the release is modified a few degrees. The release water temperature has no
significant impact downstream, except for a few miles, and no discernable impact at Pikeville.
The release DO has no significant impact below the tailwater area.
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Appendix B

Regression Analysis of
Stream Temperature versus Equilibrium Temperature
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Appendix C

Calibration of
Reservoir Temperature Profiles
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Calibration of
Reservoir DO Profiles
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Appendix E

Calibration of
Reservoir Temperature Releases
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Appendix F

Calibration of
Reservoir DO Releases
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Appendix G

Calibration of
Temperature at River Control Points






19

mIDnuycCc—HIT>IOIMTIM-—

O amy z -

Upper Levisa Fork Confluences

\,\-\

tramay
Tecui

Neea

.
Lo

ams 2

MAY

OBSERVED PIKEVILLE WATER TEMPERATURE
OBSERVED PIKEVILLEZ WATER TEMPERATLRE
COMPUTED CP18@ WATER TEMPERATURE




[43)

mIycCc~ToDMOVIM-

Ol amy Z

Upper Levisa Fork Confluences

g

-
30—
.
25—
23:
15—
16—
7] \
5——
Eﬁ— T T T T T p T
v i | ] | | 1 "1 " |
JAN MAR MaY JUL SEP MOV JEN MAR My Jul SEP NOV
' 1967 ' 1988

COMPUTED CPE8 TEMPERATURE




£

mucCc—HIT>3mMU3IM-A

Ol omg o]

Lower Levisa Fork Confluences

OBSERVED PAINTSVILLE WATER TEMPERATURE
UBSERVED PAINTSVILLE2 WATER TEMPERATLRE
COMPUTED CP7S WATER TEMPERATURE




%9

mIxcC~T>oMUIIM-A

ol omg Z

Lower Levisa Fork Confluences

OBSERVED LOUISA U-S WATER TEMPERATURE
COMPUTED CP39 WATER TEMPERATURE




)

maoCHI2OM DM~

o1l amd pragl ]

Big Sandy River Corfluences

D)

'}
114 ¥
5 ., i
4 ,
' ‘ el
i
] I'I.:

a)

COMPUTED CP28 WATER TEMPERATURE
COMPUTED CP18 WATER TEMPERATURE




99

myc—HT»IMmUIMmM-

Ol aomg Z

0 Upper Levisa Fork Confluences
B

JAN FEB MAR APR MAY JWN JL G

OBSERVED PIKEVILLE WATER TEMPERATLRE
OBSERVED PIKEVILLEZ WATER TEMPERATURE
COMPUTED CP188 WATER TEMPERATLRE

SEP

ocr NOV IeC




LD

mIucCc—~HTDOMUWIM-A

Q1L amy o=

Upper Levisa Fork Confluences

e

JAH

FEB

MAR

COMPUTED CPS8 TEMPERATURE

APR

MAY JN JUuL AUG
1994

SeP

ocT

NOW




89

mIc—HrosmMmUIMmM-H

Qlomg Z -

Lower Levisa Fork Confluences

[

JAN FEB MAR APR

MY JUN JU AG
1994

OBSERVED PAINTSVILLEZ WATER TEMPERATURE

COMPUTED CP7S WATER TEMPERATURE

SEP

oCT

NOW




69

mI3@»XCHTrIMUIMAH

Ol ame zZ -

Lower Levisa Fork Confluences

[

OBSERVED LOUISA IS WATER TEMPERATLRE
COMPUTED CP38 WATER TEMPERATURE

MY

199

JUL

A

SEP

ocr

NOW




01o

muyc—HT»IMUTIM~

Ol omy ol o

Big Sandy River Corfluences

36
m 3 '/.'
20—
—1 L
- %
: o1, i
16— x [\
7] "M A‘:
- ;
— A :;
l | | | P | I
JAN FEB MAR AFR MAY JH JUL ALG SEP ocT NOW

COMPUTED CP28 WATER TEMPERATLRE
COMPUTED CP18 WATER TEMPERATURE




Appendix H

Calibration of
DO at River Control Points
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Appendix |

Whitewater Alternative -
Flannagan Discharge and Reservoir Storage
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Appendix J

Whitewater Alternative -
Flannagan Temperature and DO Profiles
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Appendix K

Whitewater Alternative -
Flannagan Temperature and DO Releases
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Appendix L

Whitewater Alternative -
Temperature and DO at River Control Points
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