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ABSTRACT

Given inflow hydrographs were routed downstream using several different
techniques. The resulting outflow and stage hydrographs were then compared.

The standard for comparison was chosen to be the solution of the one-dimensional
Saint-Venant equations. The approximate techniques considered were the zero-
inertia equations, kinematic-wave model, and Modified-Puls with optional
subdivision of the reach lengths. The effect of floodplains was considered

in contrast to channels of simple cross section. Downstream boundary conditions
consisted of one of the following: normal-depth stage-discharge relation,
broad-crested overflow weir, or free overfall.

Dimensionless graphs of hydrograph-peak attenuation and arrival time as
computed by the various techniques are presented. The accuracy of the approxi-
mate techniques is found to depend on the values of certain dimensionless
parameters. This suggests numerical limits on those parameters for application

of a particular method.

San Francisco, California
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PREFACE

The work reported herein is a product of the Hydrologic Engineering
Center's continuing effort to improve both the accuracy and efficiency of
techniques used by the Corps of Engineers to route floods through natural
and modified river channels. This research defines the relative performance
of various flood routing methods in channels of relatively simple geometry.
Results were obtained by numerical experiments. Application of the results
to prototype conditions is demonstrated in a companion report titled '"Modified

Puls Routing in Chuquatonchee Creek."
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Comparative Analysis of Flood Routing Methods

1. Introductory summary.

Hydrographs of outflow from a reach of channel with given inflow hydro-
graphs were computed by several different techniques and compared, to discern
their relative accuracy under various conditions. The channel reaches were
prismatic, except for the downstream end. The terminal conditions studied
were (a) indefinite continuation of the given channel, with prescription of
a normal-depth stage-discharge downstream boundary condition for the reach;
(b) a channel obstruction causing backwater, schematicized by a broad-crested
overflow weir; (c) a free overfall, with its critical-depth stage-discharge
relation, schematizing sudden expansion of the given channel into a much
larger waterway. The channel cross sections considered were either simple
rectangles, or composites, composed of a rectangular in-bank portion and a
single, slightly (laterally) sloping, broad flood plain terminating in
vertical bluffs. Flood-plain resistance, characterized by the Manning n,
was generally assumed much larger than that for in-bank flow.

The standard, for comparison with other routing methods, was obtained
by numerical solution of the complete one-dimensional, nonlinear momentum and
mass-conservation equations applied simultaneously to a large number (20) of
subreaches comprising, together, the total reach length. Each subreach was
sufficiently short that curvature of stage and discharge profiles over its
length was negligible. All inflow hydrographs were sufficiently slow rising
to preclude bore formation within the length of channel studied.

Modified-Puls routing comprised the principal alternate routing technique
studied. Storage-outflow curves were prepared for each channel by integrating,

over the length of the reach, steady-state profiles of cross-sectional area



computed for a sequence of flow rates. The Modified-Puls method was applied

to the entire reach length, in a single computation for each time step, and
also, for further comparison, to various numbers (2, 4, 10, etc.) of subreaches,
successively, in a search for an optimum size of subreach for a given time

step. This proved to be unrelated to the travel time through the subreach.
Closest agreement of outflow hydrographs (primarily, peaks) with those of

the standard were achieved when the subreach length was around half the normal

depth under base-flow conditions, divided by the bottom slope.

In apportioning amongst the subreaches the total storage volume computed for
each discharge, the profile of cross-sectional areas was assumed linear, i.e.,
changes in subreach storage over a time step were assumed proportional to
subreach length. This is exactly true when the downstream boundary condition
for the reach is a normal-depth stage-discharge relation. In this last case,
as the number of subreaches is increased indefinitely, the results of the
Modified-Puls method approach those of a kinematic-wave analysis.

A kinematic-wave analysis results when a stage-discharge relationship
is specified for every station in a channel reach and is introduced into the
continuity equation. The most nearly exact numerical implementation of this
approach utilizes a network of characteristic curves, or simply, characteristics.
A study of these curves showed that kinematic waves can attenuate under
certain conditions. Such attenuation is enhanced by overflow into flood
plains, but can occur even in channels of simple cross section. Attenuation
of hydrograph peaks occurs when kinematic shocks (as distinguished from
bores) are formed in the channel at intersections of the characteristics.
The hydrograph peak is found sometimes to comprise the high side of the kinematic

shock. Shock speed is less than the speed of lower-stage elements in the



trailing limb of the wave. These ultimately overtake the higher stages on
the upstream side of the shock and result in the disappearance of these
stages from the flood wave (see section 5.4.2).

Intermediate between solution of the complete dynamic equations governing
the flow and the kinematic-wave or Modified-Puls approaches, is the zero-
inertia or equilibrium solution, sometimes called a diffusion technique.

Here, pressure, weight, and resistance forces are assumed essentially in
equilibrium, so that local and convective accelerations are negligible. In
this formulation, instabilities associated with near<critical flow especially
in irregular channels, play no role, because Froude-number considerations have
norelevance to the flow equations in this case. Consequently, routine compu-
tation of unsteady flows in rivers and streams by this method may prove more
trouble free than solution of the complete dynamic equations.

This comparative study was undertaken to find the conditions under which
the simpler routing techniques yield results close to those of the standard
solution, the latter accurate in principle, but complex to program, expensive
to execute, and subject to aborts in the course of routine computation. In
order to establish through a minimum of computational experiments the influence
of channel slope, roughness, cross-sectional configuration, base flow, and
inflow-hydrograph peak and rise time, the pertinent equations and boundary
conditions were expressed in dimensionless form. By this means, the number
of parameters affecting the outflow hydrograph was kept to the minimum possible
without excessively sacrificing the scope of the study.

For a given cross-sectional configuration and downstream control, the
reduction in hydrograph peaks with distance down the channel is governed
primarily by (1) F*, a characteristic Froude number embodying channel slope,

roughness, and base flow, (2) tQp*, dimensionless inflew-hydrograph rise time,



and (3) Qp*, the ratio of peak inflow discharge to base flow. Of lesser
import is the influence of channel length, characterized by its dimensionless
value L*. The attenuation of hydrograph peaks (relative to base flow) with
dimensionless distance as computed by the various techniques is shown in
Figs. 10 to 21, and forms the basis for technique comparisons.

Discharge maximums are plotted in Figs. 10-15, stage maximums in Figs.
16-21, and arrival time of discharge peaks in Figs. 22-27; stage peaks generally
arrive just a little later. The first three figure numbers of each set refer
to the rectangular channel, the last three to the channel with flood plains.
In each set of three the first numbered figure refers to a normal-depth rating
curve downstream, the second to a weir downstream boundary, and the third to
the overfall condition downstream. Each numbered figure (e.g., 10) has lettered
parts (e.g., 10a, 10b, ...), each referring to a different rise time for the

inflow hydrograph, or in special cases, a different inflow peak.

2. Dimensionless governing equations.
In dimensionless form (see section 5.1) the partial differential equations

of mass and momentum are, respectively,

3Q* . 9A* _
x* T arr o 0 (1)
and
a———Q*z Q2
2 [3Q* A* ) dh* e~ = 0 (2)
* - *
I (at* o )T A 5t Sk KD*Z

In this formulation, the reference discharge QO is the base flow, so that Q%,
above, represents the multiple of base flow extant at any particular station
and time. TI.e., Q* = Q/QO’ in which Q is the actual discharge. The quantity

A* is flow area A referred to the product BOYO’ A* = A/BOYO. The reference

depth Y0 is chosen normal depth under base-flow conditions; the reference
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breadth B, is the top width under normal base-flow conditions. Distance along the
channel x is referred to a longitudinal scale XO characteristic of the channel

under base-flow conditions. Thus x* = x/XO, in which

~

0
X, = — 3
07, )

with S0 the channel-bottom slope. Similarly, flow time t is referred to a

characteristic time TO to yield dimensionless time t* = t/TO, in which

X Y B
o - 000

0 Q0

@)

The Froude number F* is also characteristic of base-flow conditions and is

defined
2
2 Q .
F*" = —— (5)
B Y
g %0 Yo

The quantity h* represents dimensionless water-surface elevation, h* = h/YO,
with h the actual, dimensioned, surface elevation.
The last term on the left-hand side of Eq. 2 is the dimensionless
resistance force per unit length. The coefficient KS:is given by the formula
K #2= asps/3 (6)

D
and is seen to be related to the dimensionless conveyance K* = A*R*z/s. This
follows from the definition of friction slope Sf = Q2/K2 as the ratio of drag
force per unit length of channel, to stream weight, also per unit length of
channel. In this last expression, K is the (dimensioned) conveyance. In Eq.

6, R*is the dimensionless hydraulic radius

A*

in which W* is the dimensionless wetted perimeter, W* = W/BO, with W the
actual, dimensioned, wetted perimeter. The quantity:SF*iﬁ*given by the

equation
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2 2
Qon _
2 2.10/3 "

Cu BO YO

S xe a2y R+ 31y = ke ?ny (8)

1
F SO
in which n is the Manning n for the in-bank flow and Cu is a units coefficient

in the Manning formula (Cu = 1.0 ml/z/s in the SI system; Cu nv o 1.486 ftl/z/sec

in the English system). In a channel of rectangular cross section,

g \4/3 4/3
SF*'=(W_Q) =(____.1_2_._...) (9)
0 1+ 2Ryp

in which RY is the aspect ratio YO/BO of the rectangle wunder normal flow

B
conditions; with a very broad rectangular channel SF* = 1, while narrower
channels lead to smaller values of SF*. In any event SF* is seen to charac-
terize the cross-sectional geometry from the point of view of bed resistance.

For a given configuration of channel cross section, Eqs. 1 and 2 are
seen to contain just one free parameter, F*, embodying the combined influence
of channel slope, roughness, and base flow.

The shape of the channel cross section is specified by a series of
length ratios. A rectangular main-channel cross section is defined by RYB’
the aspect ratio of the rectangle, and by the bank-full depth, relative to
normal depth in the channel at base-flow conditions, RDY' The flood plain,
if any, is characterized by RFPS’ its transverse bottom slope, relative to the

aspect ratio of the main channel, and by R its width, relative to the

FPB
width of the main channel. Further, the ratio of flood-plain Manning n to
main-channel Manning n is given by the value RFPN' The effect of the differ-
ing n values in flood plain and channel was accounted for by evaluating the
conveyance of the entire cross section as the sum of the conveyances of main
channel and flood plain computed separately.

In the given study, the channel cross-sectional geometry was characterized

by the aspect ratio of main-channel depth to width,

RYB = 0.1 (10)
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When the effect of floodplains was studied, the values

Ryy = 1.0 (11)
(bank-full depth in ratio to normal depth at the base flow);

Rppg = 0.01 (12)
(transverse flood-plain slope relative to aspect ratio of main channel);

R... = 100 (13)

FPB
(width of flood plain relative te width of main channel);

Rppy = ° (14)

(flood-plain Manning n relative to main-channel n)
were assumed, in order to exaggerate these effects.

When the Froude number F* characteristic of a given base flow is very low,
it can be set to zero in the governing equations. This results in the so-called
zero-inertia model, because all terms involving fluid acceleration are deleted.

If the depth gradient 3y/dx is a very small fraction of the water-surface
slope 3h/3x, or in dimensionless terms, if 3y*/9x* << 1, then each cross
section has essentially uniform flow. Then a normal-depth stage-discharge
relation holds for all cross sections, in dimensionless form, Q* = K*//ggx.
This, combined with the continuity equation yields a kinematic-wave model.

If flow-area profiles are obtained for a series of steady flows and inte-
grated over reach lengths to yield storage volume as a function of discharge,
and this is combined with the continuity equation, also integrated over reach
length (see section 5.5), the result is a Modified-Puls technique. Evidently,
if the flow-area profiles are obtained under uniform-flow conditions (long
prismatic channel, arbitrary cross-sectional shape), and:a sufficiéntly large
number of subreaches are used, the results of this Modified-Puls technique and
the nmormal-depth kinematic-wave model must agree.

In order to reduce the number of additional solution-governing variables
to a minimum, inflow hydrographs were taken of fixed shape, and allowed to
vary only in the ratio Q;‘of peak discharge to base flow, and in dimensionless
rise time tQ; = tQP/TO,in whichixh)is the actual, dimensioned, time to peak.
The form of the hydrograph is the so-called Pearson Type III, which is char-

acterized by the equation
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t¥
e \2 a(l - fQ =)
* * . eSO

Q* =1 + (QP 1) tQ;' e P (15)
in which the coefficient a is related to the skew s of the hydrograph by the

equation

g = 1 (16)

In the studies reported, s was given the constant value
s =1.2 (17)
The downstream end of the channel, of dimensionless length L* = L/XO,
was characterized by one of three boundary conditions: (a} a normal-depth

stage-discharge relation, in dimensionless terms,
Q* = Kp*/A*//s.* (18)

(b) a broad-crested weir of dimensionless height p* = p/Y ., leading to the
& 0

following dimensionless relation between stage and discharge

2 .2 2 5.2
* * KA .
2A% B, *

In the derivation of this relationship (section 5.1.2), the breadth of the channel
end section at elevations greater than the weir crest was assumed equal to that
at the crest. In the studies reported herein, the dimensionless weir height,
whenever a downstream weir was postulated, was held constant at

p* = 2.0 (20)

(c) a free overfall with a critical-depth stage-discharge relation, viz.,

]/ * 3 *
Y A*"/B* (21)

Q= T

formed the third downstream boundary condition tested.

3. Dimensionless parameters governing the outflow hydrograph.
Thus, taking into account both the governing equations and their boundary
conditions, the dimensionless outflow hydrographs are determined once values

are assigned to IF*, QP*,tQ;, and L*.
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The graphs, Figs. 10 to 27, were prepared by selecting a series of
characteristic Froude numbers F*

0.1 < F* < 0.8 (22)
and letting the relative time to peaktq&f vary in the range

0.5 <ty < 20 (23)
The ratio of peak inflow to base flow QP* was held fixed at
Q* =5 (24)

while the dimensionless reach length varied mostly in the range

1 <L* <4 (25)

L* was held to 1 or 2 with weir or overfall downstream, in order to exag-

gerate their effect.

The significance of these ranges can be seen by noting what they would
mean in dimensional terms if applied to a channel of given cross section. For
a given ratio RYB of channel depth to width under normal conditions, Eqs. 3-5
can (using Eq. 9) be rewritten in the following form

‘/é— ¥ Y05/2

Q = -———ﬁgg———— (26)

g E*Z n2(1 + 2RYB)4/3

Sp = 2 . 1/3 (27)
cC°y
u 0
Y04/3 Cuz
X, = (28)
0 (1 + ZRYB)4/3 g F*z n2
y 5/6 C 2 y 1/2
Ty = 04/3 g/z 32 1/2O (29)
*
1+ ZRYB) g F*" n g Sy IF

For example, in a channel of rectangular cross section with normal depth
YO = 10 feet, breadth B0 = 100 feet, and Manning n = 0.03, a given choice of .
IF* corresponds to the following values of characteristic time TO’ characteristic

distance X,, base flow QO’ and bottom slope S

0’ 0’
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Table 1. Example Dimensional Values.

F* T0 Xo(miles) QOCCfs) SO

0.1 20 hrs 24 1,790 0.00008
0.2 2.5 hrs 6.1 3,590 0.0003
0.3 0.74 hrs 2.7 5,380 0.0007
6.4 19 min 1.5 7,180 0.0012
0.5 9.6 min 0.98 8,970 0.0019
0.6 5.5 min 0.68 10,800 0.0028
0.7 3.5 min 0.50 12,600 0.0038
0.8 2.3 min 0.38 14,400 0.0050

Thus, with this channel cross section, a chosen parameter F* = 0.2, tQ;'=
10 would correspond to a base flow of about 3600 cfs, a peak inflow of 18,000
cfs and a time to peak of about 25 hours. At L* = 4, the outflow hydrograph

would pertain to a station 24.4 miles downstream of the inflow.

4. Analysis of results.

The dimensionless plots of hydrograph peaks shown in Figs. 10 - 27 can
be analyzed from several different points of view. (a) The results of the
complete hydrodynamic model can be viewed as indicating the general behavior
of floodwave speed and attenuation as functions of base-flow and flood-event
characteristics. (b) Results of the simpler models show what stream and
event parameters appear to affect flood-wave attenuation when certain hydraulic
phenomena are ignored. (c) Intermodel comparisons shed light on the nature
of some of the simpler models, and (d) delineate useful ranges for application
of such models. The emphasis of the present work is directed to the last two

areas.
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4.1 Floodwave speed and attenuation--an-overview.
The accuracy of the complete hydrodynamic model is limited only

by its assumption of one dimensionality, i.e., a level water surface trans-
verse to the flow and an essentially uniform velocity distribution. These
assumptions, while questionable in the event of overbank flow, are well met in
channels of simple cross section. Other errors, stemming from finite computa-
tional time and distance increments or nonhydrostatic pressure distribution are
negligible. Thus the curves do represent the true behavior of flood peaks,
especially in channels of simple section.

It may be possible to derive empirical formulas describing this behavior,
or to generalize it still further by use of appropriate scaling factors for
abscissa and ordinate, but this is not the primary concern here, and was not
attempted.

It is evident, from the curves presented, that attenuation decreases with
increasing base-flow Froude number, regardless of how that is achieved (steeper
slope, smaller roughness, or greater discharge). As expected, attenuation
increases with increasing relative sharpness of the flood wave, i.e., as
inflow-hydrograph rise time decreases or characteristic time increases (see
section 4.4). The rate of attenuation with distance is relatively unaffected
by reach length once it is in excess of some minimum. Of course, attenuation
is greatly enhanced in the event of extensive overbank flooding.

With dimensionless rise times in excess of about 10, attenuation is very
small in the rectangular channel with normal-depth rating curve at the down-
stream end (Fig. 10). With the weir downstream, similar small attenuation
occurs with rise times perhaps half that size (Fig. 11). The overfall down-
stream causes similar behavior (Fig. 12). With the floodplain, significant

attenuation was achieved at thelargest rise time tested, tQP* = 20 (Fig. 13).
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Stage peaks exhibit less attenuation than discharge peaks, especially
with the floodplain. They are less sensitive to Froude number (Figs. 16-21}.
The effect of the downstream boundary is to pull up the discharge peaks
at channel end slightly (Figs. 10-15). With normal-depth, and weir rating
curves downstream, peak stages are brought up somewhat, and sharply, respective-
1y, near the channel end; the overfall of course produces the opposite effect
(Figs. 16-21).
Speed of propagation of hydrograph peaks remains consistently nearly

equal to the wave speed (Figs. 22-27)

dQ
v, 0
W=y L v (30)
i.e., travel time, t AL (30a)
T dQO

Note the ten-fold larger time scale used in the graphs for the floodplain, to
accommodate the very great dispersal of the wave in this case.
4.2 Flood-wave characteristics as computed with simple models.

The influence of channel bottom slope, roughness, and base flow is
manifested in the dimensionless governing differential equations only through
the base-flow Froude number {F*. In the zero-inertia, kinematic-wave, and
Modified-Puls techniques, with a normal-depth stage-discharge downstream boun-
dary condition, this parameter is totally absent. Thus, hydrograph-peak
attenuation is independent of base-flow Froude number. It is affected only
by the dimensionless inflow hydrograph, as characterized by peak and rise
time. Speed of propagation in the kinematic-wave or Modified-Puls method is
independent of both the Froude number and the inflow hydrograph rise time.

In the Modified-Puls technique, base-flow Froude number plays a small
role with weir and free-overfall downstream boundary conditions, because it
affects, somewhat, the shapes of the succession of steady-flow profiles from

which storage-outflow curves are drawn.
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With a normal-depth downstream boundary condition, the kinematic-wave
and Modified-Puls approaches yield attenuation with distance from the upstream
end, independent of total reach length. In other words, the wave behavior at
any point is governed solely by conditions upstream from that point.

With the weir or free-overfall downstream boundary conditions, as the
channel becomes very long, it begins to behave like one with a normal-depth

downstream boundary condition.

4.3 The Modified-Puls method in the light of kinematic-wave theory.

All of the flood-routing techniques studied involve numerical inte-
gration or differentiation over finite increments of distance or time, or
both. Generally speaking, the smaller are these increments, the more accurate
are the results. Furthermore, as step sizes are reduced, the results approach

limiting values; further reductions in step size lead to no further significant

changes in results. At such time, it can be said that the results reflect
the basic assumptions of the technique, rather than the numerical accuracy
with which that technique is carried out. In the studies described, step
sizes were indeed reduced to the point that the results became, for practical
purposes, independent of step size.

The one exception to this general rule was seen with the Modified-Puls
method. At its foundation, the Modified-Puls technique differs from the
others, in that in concept it is based on a presupposed relation between
storage in a finite, perhaps very long, reach and the outflow from the down-
stream end of that reach. All of the other techniques have as a basis, some
given relationship between depth and discharge variations locally. This can
be expressed algebraically, if depth and discharge profile shapes, say straight
lines, are assumed over a short span (as in sections 5.1-5.3). The total
reach length of interest and total time of interest are covered by simultaneous

or sequential solution of the algebraic equations written for each sub-span.
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As stated, the smaller are the sub-spans, the more nearly are the actual pro-
files linear over a sub-span, and the more accurate are the solutions of the
governing algebraic equations.

The Modified-Puls method is like this in time only. And as the time step
is reduced, the calculated hydrographs rapidly approach a limit; this is
essentially what appears in the plots presented. In a variation of the
Modified-Puls method tested in this study, however, storage-outflow relations
were prepared for sub-reaches of the main reach by apportioning the total
volume in the channel, computed for each steady-state discharge, equally
amongst the subreaches. Thus each subreach is provided with a storage-outflow
relation.

In one sense, the computed storage is prism storage only, because it is
assumed to depend on outflow only, rather than upon inflow also, as in the
case of wedge and prism storage. On the other hand, because the steady-state
profiles which are integrated to yield the storage values are not necessarily
profiles of uniform flow--note the varied-flow profiles behind the weir (M1)
(Figs. 1a,b) and overfall (M2) (Fig. lc)--the water volumes computed are not
really prismatic in shape. Still, a rapidly rising floodwave, in a channel
of finite cross-sectional proportions, would yield an additional wedge compo-
nent not computed in the given variant of Modified-Puls. In reservoir routing,
for which the technique originated, the pool, of course, remains essentially
level during passage of floods and prism storage of the type computed is all
that, in fact, exists. This is the situation approached in the flood flow
behind weir and overfall, especially for the slowly rising inflow hydrographs.

In any event, as the number of sub-reaches is increased, it is evident

that the channel is ever more nearly being provided with cross-sectional area

vs. discharge, Q(A), relationships for a series of stations along the channel,
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Fig. 1. Initial conditions. Base-flow depth profiles.
(a) Rectangular Channel, Weir Downstream Boundary
Condition.

(b) Channel with Floodplain, Weir Downstream
Boundary Condition.

(¢) Rectangular Channel and Channel with Floodplain,
Overfall Downstream Boundary Condition,



-16-

leading thereby to a kinematic-wave analysis (section 5.4). Indeed the
resulting behavior of hydrograph peaks more and more nearly approaches the
results of a pure kinematic-wave analysis. In fact computed attenuation of
the wave can be reduced to any amount desired (presumably up to that dictated
by the formation of kinematic shocks--see section 5.4.2) by a suitable choice
of sub-reach length.

An examination of the peak-attenuation curves shows that, empirically,
there appears to be a dimensionless sub-reach length §x*, that yields an
attenuation closest to that of the standard, as given by the complete

hydrodynamic model. This "optimum'" value is generally in the range
0.3 < &x_* < 1.0 (31)

The reader is cautioned that this information is strictly empirical; no
theoretical basis has been found for the existence of such an "optimal' value.
Nothing can be said about Sxakfor conditions outside of those tested.

Apart from these purely empirical considerations, theoretical questions
arise: (a) does decreasing sub-reach length in the Modified-Puls method
yield more accurate results, and (b) does decreasing sub-reach length yield
results more nearly in accord with the basic assumptions of the Modified-Puls
method. The answer to both questions, in general, is: no. For if one were
to apply this sub-reach volume apportionment to the case of a real, large
reservoir, which maintained a truly level surface during passage of a flood,
the computed attenuation would be smaller than the true one, the difference
being greater as the number of subreaches increased (and as the rise time
decreased). The true attenuation would be computed in this case by the
Modified-Puls method with 6x0 equal to the entire reservoir length.

Furthermore, decreasing sub-reach length doesn't necessarily reflect the
basic assumptions of the Modified-Puls method more closely. The key assump-

tion in this method is the existence of a known relationship between storage in
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a reach (or subreach) and discharge at the end of that reach (or subreach).
The given method of apportioning storage amongst subreaches gives a relation-
ship between storage in a subreach and discharge, not at the end of that
subreach, but at the end of the entire reach. Except for floods that rise so
slowly (say, tQp* > 20) that the flow in the entire reach can be viewed as a
succession of steady states, discharge is not the same at all stations, and
so the storage-discharge relation postulated for the subreaches will be in
error. Only if the flow is locally controlled, say essentially at normal
depth for the local discharge, will the storage-discharge relation be correct
for the subreaches, i.e., within the context of the Modified-Puls assumptions.
In that case, the flow conditions satisfy the key assumption of the kinematic-
wave procedure, namely, there is a (known) stage-discharge relationship at
each cross section. Consequently, there is no attenuation other than that
engendered by formation of kinematic shocks, and the Modified-Puls method
would yield the most accurate results with the largest number of subreaches
(because only prism storage is accounted for, even 99 subreaches, the largest
number that could be handled by the present computer programming, were insuf-
ficient to mimic exactly the results of true kinematic-wave analysis [see
e.g., Fig. 13d]). Thus, subdivision of the reach reduces the inevitable
attenuation that occurs with the Modified-Puls method.

In conclusion, the following may be stated about the Modified-Puls
method and apportioning of steady-state varied-flow-profile storage to sub-
reaches. For flow that is heavily controlled from downstream, in the limit
a large reservoir with outflow, Modified-Puls should work well with the full
length of the reach used, without subdivision. For flow that is controlled
locally (e.g., depth gradient negligible), if Modified-Puls is to be used,

the larger the number of subdivisions the better. For the flow in this case
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would be truly modeled by kinematic-wave analysis, and this is approached
by Modified-Puls with a very large number of subdivisions.

In most cases, even without a controlling hydraulic structure downstrean,
simply with so-called friction control, a normal-depth downstream boundary
condition, the relation between depth and discharge at a given section depends
upon conditions in neighboring portions of the channel. Neither kinematic-wave
nor Modified-Puls basic assumptions are satisfied. As mentioned earlier,
empirical evidence shows that the Modified-Puls method with the reach sub-

divided can yield attenuation of flood-wave peaks close to that observed.

4.4 Intermodel comparisons.

In interpreting the peak-attenuation curves, the significance of
the dimensionless parameters should not be overlooked. The characteristic
distance and time to which real distance and time are referred to yield their
dimensionless counterparts are defined by Egs. 3 and 4 in section 3; the char-
acteristic Froude number is defined by Eq. 5. These variables are viewed again
in Eqs. 26 - 29. It is seen, for example, through combination of Eqs. 27 and
29, that

1/2
T = —————-————O (32)

Thus, the steepness of a channel is manifested in these curves not only in
the Froude number of flow, but in the characteristic time and distance as well.
A given real time of rise has, typically, a larger tQp* in a steep channel,
than a flat one.

An overview of the figures suggests that for a given channel geometry,
the most significant parameter affecting the behavior of a flood wave, or

the accuracy of its computation by one or another method, is the dimensionless
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rise time tQP*, and when this is small, F* as well. The ratio Qp* of peak
discharge to base flow is distinctly of secondary importance. In addition
to the evidence offered by comparison, for example, of Figs. 13d and 13g,
the following approximate analysis is helpful in explanation. In a channel
of broad rectangular cross section, the characteristic depth is given by

qo n 3/5
Y = f——_—

O ¢ 5o
u 0
in which a4 is the base flow per unit width of channel. In accord with Egs.

3 - 5, the remaining characteristic parameters are

. 3/5 {g_JS/S
X = 0 u
o S 13/10
0
6/5
)
T = q0 u
0 S 8/5
0
1/10 /S 5/10
P oo 90 0
g1/2 n/Cu

For a given peak flood discharge, doubling the base flow would change tQp*
by only 15% and the Froude number by but 7%. Even a 10-fold increase in
base flow decreases tQp* by just over omne third (37%), and increases [F* by
only 20%. While L* is inversely proportional to the 3/5 power of base flow,
dimensionless reach length, as discussed previously, is not a very important
factor.

In the channel with floodplains, the effect of characteristic Froude
number IF* was seen to be negligible; in the rectangular channel F* played a

significant role only for tQp* < 2. The range of base-flow Froude numbers for
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which the zero-inertia model yields useful results increases as the time to
peak of the inflow hydrograph increases. As evident in Fig. 10, with tQP* =
0.5, the zero-inertia model yields good accuracy for F* < 0.2; at tQP* = 1.0,
the same accuracy is achieved at F* < 0.3; at tQP* = 2.0, all IF* < 0.4 yield
good results with the zero-inertia model. Figure 13 shows that in the channel
with a flood plain, zero-inertia analysis was suitable for all flows with

F* less than 0.5 at least.

The "optimum" &x* for application of the Modified-Puls method varied
somewhat with the nature of the channel cross section, the downstream boundary
condition, and the inflow hydrograph rise time. The discharge-attenuation
curves with Modified Puls do not always follow, exactly, the trend of the
hydrodynamic solutions. Thus, selection of an optimum 8x* emphasizes the
value of hydrograph peak at the end of the channel reach.

Figures 10 and 13 show that with a normal-depth downstream boundary
condition, Gxo* ¥ 0.35 with a floodplain, and perhaps twice that value in
the rectangular channel. With the weir downstream boundary (Figs. 11, 14),
SXO* ¥ 0.4 - 0.5 with the floodplain, and 0.7 < 6x < 1.0 in the rectangular
channel, the larger values appropriate to rise times greater than about unity.
With a floodplain and the overfall downstream, 6xo* lay between about 0.22 -
0.30, the larger values pertinent by and large to the larger rise times

(Fig. 15). In the rectangular channel Gxo* is around 0.33 - 0.5 for tQP* =

0.5 and increases to 0.7 for tQP* = 1.0. At tQP* = 2.0, ﬁxo* ~v 0.5 to model

[F* = 0.2, and SXO* = 1.0 to represent F* = 0.5 well. At tQP* 5.0, there
is very little attenuation, and SXO* = 1.0 worked well for both Froude

numbers.



-21-

An examination of the attenuation of stage peaks (Figs. 16-21) shows,
first, that stage attenuation is far smaller than discharge attenuation.
Second, it is much less sensitive to Froude number, and finally, it is
less sensitive to choice of &x* in the Modified-Puls method.

Time of arrival (Figs. 22-27) is relatively uninfluenced by 6x*, provided
only that the latter is less than about 2. A value of dx* = 0.5 leads to
close approximation of the travel time in most cases.

An overview of Figs. 10-15 explains the mixed success with which the
Modified-Puls method is used in practice. In floods without overbank flow
a small dimensionless rise time (to % < 2) leads to true attenuation
dependent upon normal Froude numberzF*. The band of correct solutions
Qm* (x*,tQp*,F*,...) gets narrower and narrower with increasing tQp*, SO
that with tQp* > 5, attenuation is virtually independent of F* (as well as
very small). The band of solutions QmMP* (x*,tQp*,éx*,...), showing attenua-
tion computed by the Modified Puls method, is more spread out with various
§x* at tQp* = 1.0 than at tQp* = 0.5. But then, with further increases in
tQp*, the dependence upon 8x* diminishes, and the band of solutions gets
narrower and narrower, squeezed mostly into the ever smaller region between
the correct attenuation curve and zero attenuation. At small tQp*, then, a
choice of &x* can be made with the Modified Puls method that will reflect
correct attenuation for the given Froude number. At large tQP*, the (very
small) attenuation can be computed with little regard for Sx*.

With overbank flooding, these circumstances with regard to §x* are
somewhat exaggerated. The influence of IF* upon the true solution is negligible,
especially with a normal-depth rating curve downstream. However, at small
tQP*, the influence of 8x* in the Modified Puls method is also minimal. The

width of the solution band Qu,..* (x*,tg *,8x*,...) is still very narrow at
MP Qp

* < 1. In this range Modified Puls can work very well without careful

tQp
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choice of 6x*. As tQp* increases, band width increases--without limit at
least to tQp* = 20 with the normal-depth downstream rating curve. In this
range, successful use of Modified Puls requires a good choice for 8x*. Under
the conditions tested, this appears to be about 6x0* ¥ 0.35 (0.25 for the
overfall downstream). However, because the observed close correlation
between the true physical attenuation and the computed mathematical attenuation
of the Modified Puls method is entirely empirical, it may well fail to
persist under different conditions. Optimal values of dxo* may well be dif-
ferent. The influence of Qp* and L* appears to be minimal, but other,
geometric, factors may play a role.

With very large dimensionless rise times (tQP* > 20), at least with
welr or overfall downstream rating curves, the very small attenuation again
compresses the Modified-Puls-solution band width, so that successful compu-

tation can be performed without much regard for the size of &x*.

4.5 Sample application.
The user contemplates routing a hydrograph peak of 24,000 cfs,

over a reach of 60 miles down a river in which the base-flow prior to the
flood is Q0 = 1400 cfs. The inflow hydrograph rises to its peak value in
about 2 1/2 days. The average slope of the channel is 0.5 feet per mile.
The river channel, approximated by a rectangle, is 300 feet across and 6 feet
deep when bank full. Overflow spills into the floodplains, sloping laterally
at approximately 1 foot per mile. Manning n in the floodplains is estimated
at 0.05.

At the flow of 1400 cfs, the average depth is 5 feet. The Manning n for
the main channel is evidently n = 0.044. Froude number of the base flow,

assuming normal depth, is FO = 0.07.
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The characteristic distance is (Eq. 3) X, = 52,800 = 10 miles; character-

0
istic time is (Eq. 4) TO = 56,571 sec = 15.71 hours; dimensionless time to
peak is tQp* = 2.5 » 24/15.71 = 3.82.

Examination of Figs. 10c and 104, for channels of aspect ratio 0.1 (as
oposed to the given channel of about 0.02, or less when the flood plains are
inundated), and tQp* = 2 and 5 respectively (as opposed to 3.82 in the given
case) suggests that the zero-inertia model would be entirely accurate, and
that the kinematic-wave model would be grossly inaccurate. Modified-Puls
with distance steps of about 10 miles may yield adequate outflow discharge
peaks. Figures 13c and d, depicting similar rise times in a channel with
floodplains, also show that the zero-inertia model should give excellent
results. With the Modified-Puls method, dimensionless distance steps of
about 0.3, i.e., steps of about 3 miles, would appear to give adequate results.
It is difficult to estimate a suitable distance step for this method.

Figure 2 shows computed peaks obtained for the given case by way of the
Saint-Venant equations, the zero-inertia model, and Modified Puls with
distance steps of 3, 5, and 10 miles, supporting the predictions made. The
zero-inertia model is seen to give results virtually identical to those of
the complete hydrodynamic model, as expected. The Modified-Puls method
gives reasonably good results with an appropriate choice of distance step,

but it is difficult to predict that optimum size.

4.6 Conclusions.
The actual passage of a natural flood down a river is governed
by the complete hydrodynamic equations of flow, i.e., the one-dimensional
Saint-Venant equations of continuity and motion. Additionally, two-dimensional
terms and equations may be needed to describe greatly different flow parameters

in main channel and floodplains or gradual lateral inundation of the floodplains,
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rather than the instantaneous flooding implied by the laterally horizontal
free surface assumed in the one-dimensional model.

Any physically based routing model takes cognizance of these equations,
either directly or indirectly. In the present study, two-dimensional effects
have been ignored, and the one-dimensional equations of Saint-Venant have been
assumed adequately to represent the physical circumstances. Solutions of
these equations are hence taken as standards, against which other models can
be measured.

The zero-inertia model is seen in many cases to yield results very
close to those of the standard. The graphs of Figs. 10-15 show that only
at relatively small values of dimensionless rise time, say tQP* < 2, is the
steady-state base-flow normal-depth Froude number a significant variable.

And even then, if it is low, the zero-inertia model will yield satisfactory
results.

The kinematic-wave model with a normal-depth stage-discharge relationship
postulated at all stations has deleted from the motion equation not only the
acceleration terms, but also the effect of the depth gradient. Despite the
incidence of kinematic shocks, which can cause a predicted flood-peak sub-
sidence, in the natural floods studied, only those floods with dimensionless
rise times in excess of about 10, which exhibit practically no subsidence,
are well modelled by kinematic-wave theory. This limit applies only to the
channel without floodplains; in the opposite case, even with a rise time of
20, the largest tested with a normal-depth rating curve downstream, subsidence
was substantially greater than that predicted by kinematic-wave analysis. The
reader is reminded that large dimensionless rise times are typically associated
with smooth, steep channels with large base-flow Froude numbers (see the

second of Egs. 29).
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The Modified-Puls method is often characterized as one utilizing the
continuity equation alone, but it too is dependent in one way or another
upon the equation(s) of motion as well. The storage-outflow relation used
in conjunction with the inflow-outflow-storage-rate equation (continuity),
whether obtained empirically from past flood events, or hypothetically from
steady-flow backwater curves, contains inherently one or another dynamic
relationship. The empirical relation contains all the terms of the complete
Saint-Venant equations in the proportions in which they existed for that
particular event. The hypothetical ones reflect only those terms which
were retained for the analysis.

The Modified-Puls method based upon an empirically derived storage-
outflow relationship, stemming from actual past flood events in the given
reach, can yield results superior to the variant, based on steady-state
profiles for various discharge rates, tested here. In this latter case,
the storage-outflow curve for a real flood event will agree with the hypo-
thetical one only if the contribution of the unsteadiness of the flow to
aV/at, VaV/ox, and 3y/3x is very small, compared to the contribution to the
last two terms by the nonuniformity of the flow. Such is evidently the case
with short channels and a weir or free-overfall downstream boundary condition,
especially for a flood event with a large rise time. Empirically gathered
data, on the other hand, yield a storage-outflow relationship that is ab-
solutely correct, for that particular event. Provided the various terms
in the motion equation retain about the same values each time a given outflow
from the reach is attained, the storage-outflow relation will remain unchanged.
Once measured, it can be used confidently for all future floods of that
magnitude, the Modified-Puls method applied, furthermore, to the full length

of the reach, without subdivision into subreaches.



-27-

With the storage-outflow relationship obtained theoretically through
a succession of steady-state profiles, the Modified-Puls method can yield
reasonably good results with an appropriate choice of distance step, but it
is difficult to predict that optimum size. The difficulty arises because
there is no rational correlation between the mathematical attenuation of
the Modified-Puls method, and the physical attenuation predicted by the
hydrodynamic or zero-inertia models. The former is a continuous function of
distance-step (sub-reach) size, while the latter is independent of step size,
once this is small enough to make truncation errors insignificant.

As regards arrival time of the flood peak, the correct value, given by
solution of the Saint-Venant equations, is considerably greater than that
based on the celerity of an infinitessimal gravity wave, as computed by the
same equations, c = VgA/B. Solution of the zero-inertia equations leads
in most cases, as indicated, also to the correct value of arrival time, in
contrast to the instantaneous arrival of an infinitessimal wave predicted
by this model. Kinematic-wave theory leads, on the other hand, to about
the correct arrival time independent of wave height. The Modified-Puls
method as described, predicts relatively small arrival times. In the case
of the channel with floodplains, with no subdivision of the reach (N = 1),
even when Qmax was predicted with fair accuracy, the time of arrival of the
peak was very, very early, with up to 90% error. The predicted time of
arrival gradually approaches the correct value as the number of subreaches

is increased, with good results generally obtained at &x¥* = 0.5.
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5. Derivation of the governing equations.
5.1 Complete one-dimensional hydrodynamic equations.
5.1.1 Equations governing flow in a subreach.

Although the present study excluded nonprismatic channels
and tributary inflows, the governing equations are derived, for completeness,
with these features included.

The physical principles of mass and momentum conservation are expressed
for a subreach of small (not necessarily infinitessimal) length 6x. With
reference to Fig. 3, conditions pertinent to the left-hand cross section
at some time t are subscripted L, those for the right-hand cross section at
the same time are subscripted R. At a time slightly earlier than t (t - §t
with 6t small, not necessarily infinitessimal) the left and right stations
are subscripted J and M, respectively. If 8x is sufficiently small, then
over that span, the water-surface profile can be assumed straight, as can the

variation of the cross-sectional area, with distance.
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Fig. 3. Elementary water volume.

Expression of mass conservation for a fluid of negligible compressibility

contained between the given left and right cross sections is

[6(Q - Qq * g 6% + (1 - 0)(Qy - Qy * ay, 6x)16t

A+ A A+ A
=[(__L2 R)-(__—_JZ M)JSX (33)

Q is channel discharge, q is lateral (tributary) inflow per unit length, and

A is cross-sectional area. Provided that discharge is assumed to vary linearly
with time over the interval S8t, the weighting factor 6 should, for precision,
equal one half. The stability of the numerical scheme which expresses mass

and momentum conservation over large times and distances, however, requires

& > 1/2. In computations it is set as close to 1/2 as will yield relatively
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smooth hydrographs and profiles, but never exceeds unity. In the present
study, except as noted, this weighting factor was held constant at

B = 0.6 (34)
The double subscript LR refers to the average value taken over the length of
the increment dx, at time t, while JM corresponds to the average value at
t - §t.

Momentum conservation, or more properly an impulse-momentum relationship,
can be written for the same changing volume of water over the same period of
time, as follows.

2 2

Q Q (A, + A)
L R R
{.(Y[ Rxjp 6% - Ppl + 0 A * U g X - Ry Y 3 (zop, - zop)

e R - M
Dip 8X) + (1 - 8)(v[Py + Rypy 6x - Pyl + 0 A Vo Y X TR

A+ A F l Q Q Q, + ’
J M _ L+ R J M
+ ———§--(ZOL— ZOR) - DJM 6x) §t = p 5 3 ‘ 8x (35)

The hydrostatic pressure force on a cross section is given by yP, in

which

Yy
P = J (y - n) B(n,x)dn (36)
0

with B the breadth of the channel at any elevation n above bottom. In a pris-
matic channel, the dependence of B on x vanishes. In a nonprismatic channel,
the pressures on the sidewalls have a component in the direction of flow
YRxﬁx,in which

J
R = J vy -n)
0

EEH!l:&l dn (37)
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Accordingly,

‘ - _ 3P _ 5 3y ‘
P(x) + RX §x - P{x + 6x) = (RX ax) §x = A X §x {38)

The bar over a variable implies an average value over the length dx.
The net pressure and weight forces can evidently be combined into a single
term involving the longitudinal change in water-surface elevation, e.g.,

A A A+ A
L + R L R (hL - h

Y[PL + RXLR 8x - Pp t 3 —-(zOL - zOR) =Y > (39)

R

The momentum flux pQ2/A is computed on the assumption that the flow is
distributed uniformly over the entire cross section, flood plains included.
The momentum flux entering the volume element with tributary inflow is assumed
distributed over the length of the element §x; the volumetric inflow rate is
q per unit length of channel, and the momentum brought in thereby per unit
volume is pu, with u the longitudinal component of velocity possessed by the
tributary inflow. The momentum content, per unit length, of the volume
element lying between the given cross sections, is the mass of the element
per unit length, pA, multiplied by the momentum per unit mass V, i.e., pQ;
consequently the momentum content of the element at any time is 0 Q 6x.

The average drag of the channel walls over the length &x is given by

yD = Yﬁ—_’—é—é— (40)

KD

in which 1/KD?is a drag coefficient dependent upon the cross-sectional flow
geometry and roughness of the bed. It is related to the conveyance K of the

channel, as follows

2 2, 2
KD—K/A—AChR (41)

in which R is the hydraulic radius, and the Chezy C, is given by the Manning

h

formula
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c = -2Rrl/® (42)

with Cu a units coefficient: Cu = 1.0 ml/z/s
in the metric system; Cu v 1.486 ftl/z/sec in the English system. In a composite
cross section, K is assumed the sum of the individual conveyances of the main
channel and flood plains.

With Eqs. 39 and 40 in force and following division by y 8t (S8t in the

case of Eq. 33), Eqs. 33 and 35 can be written

AL * A
G(QL - QR + qLR §x) + (1 - 6)(QJ - QM + qJM §x) =(.__ 5 -
A_ +
RS
2 2
A A Q Q )
L+ R ‘ 1 L R
e[ 7 (b - hp) + "g"(AL' Ry Ur R O% 7 Prr ‘Sx]
2 2
Ay + A Q,” Q
J M 1 % M
+ (1 - 9)[ 5 (hJ hM) E( AJ AM ¥ Uy g Sx) DJM 5){]
Q +Q Q, + Q
1L TR T M) osx ,
g [ 2 2 } st (44)

5.1.2 Downstream boundary conditions.

With the equations of mass and momentum conservation given for
all subreaches, and with initial conditions specified as steady state with the
base flow, and with the upstream boundary condition given by the inflow hydro-
graph, the remaining factor governing the outflow hydrograph is the downstream
boundary condition at x = L.

A normal-depth stage-discharge relation thereis given by

D=AS (45)

in which SO is the bottom slope.
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A broad-crested weir at the downstream boundary of a reach implies
critical depth on its crest. The depth y and discharge Q at the downstream
end of the subreach just upstream from the weir, of height p above channel

bottom, is given by the relation,

2 2 1/3

Q- §(.~Q )

y + =p (46)
2 g A2 2

in which Bw is the breadth of the channel at the crest.

A critical-depth stage-discharge relation at the downstream boundary
implies the Froude number is unity there, i.e.,

FZ = - Q3 =1 (47)
g A”/B

in which B is the top width.

5.1.3 Reduction of governing equations to nondimensional form.

0’ XO, TO with dimensions

LS/T, L, L, L, T respectively (L: length; T: time), but otherwise (momentarily)

Non-zero reference variables QO’ YO, B

undefined, are introduced. The following nondimensional variables are then

defined,
‘ Q q ‘ A h « _ Y
* o= % = * = e % e * = L
u X t W P
u‘* e x* = — t¥* = R W* = — 5 p* = S (48)
Qo (YgBy) X0 To Bo Yo

in which W is wetted perimeter.

This allows Eqs. 43 and 44 to be written

QOTO % " % % * * * % }
EEYSXBH{G(QL - Qg roqpp” 8x*) + (1 - 0) (Q;* - Q" * dgy dx*)

A* + A% A* + *
=(L R ' J AM)6X* (49)

2 ) 2 St*
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2| AL AT Q02 QL*2 QR*Z
[ I % _ * , - N * * *
BpYop 9 5 (hp* - hp™) + T o B\EF T RF YU’ apt X
g BO Y0 L R
Q02 n’ 304/3 X Ayt o+ Ay
- % * . - e k. . 3
D * 8x*| + (1 - 8) ; (h,* - hy*)

2 ~7/3 2
Ca (Bo¥gd "™ BpYy

2 2 2 2 243
Q G Qy Q, n B, / X0
* 2 3\A* A7 ° ung® Q" X)) - 3 773 7 D" Ox*
g 8,0 v\ c 2y "% BY,
* * * F3
_ QX (QL A A A Qy ) sx* (509
T, 5 7 Se*

0 represent, respectively, base

flow, normal depth at base flow, and top width under base-flow normal-depth

It is now specified that QO’ YO, and B

conditions, and also, that

Y0
X = —= (51)
0 S0
in which S0 is a representative bottom slope of the channel. This makes

dimensionless slope unity,

dz * S
...___.O_.. = ® o O — )
" TSy Ty x. ! (52)

Further, the characteristic time is set to the value

X.B.Y
T, =200 (53)
0°Tq,

Then the continuity and momentum equations can be written, respectively,
= * . * 3 * * - * _ * * *

A* 3+ A% A_* *
_( L R J +AM )ax*_ (54)

2 B 2 St*
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AL* + AR* QL*Z QR*Z
= ——e * * * e N a * * *
R 8 (h h ) +F +up® qrp §x*

* *
M 2 iR
2 2
. \ | 2( Y M
. * * * - 5= - * * — -
Sg* D p* ox*| + (1 - 0) (hy* - h*) +F (A* <
J M
* o4 Q* Q.* + Q.*
. 2| 47 RT G Q) axe
* % %! _ a =% ® Sv%| _ % _
* UM m ‘5") Sg Dy 8x%| - F ( 2 2 >6t*
=0 (55)

in which two dimensionless parameters, a Froude number and a drag number,

characteristic of the channel under base-flow conditions appear,

2
2 %
[F* = —5 3 (56)
B Y
0 0
and
2 2
Q.,” n” X
S * = —0 0 - a2y 31y = ¥ (1) (57)
F 2 2 13/3
C B Y
u 0 0
The dimensionless drag is computed in accordance with
2
D+ = L (58)
K *
D
in which
g *2 = px ged/3 (59)

D

The dimensionless hydraulic radius is given in terms of the dimensionless

area and wetted perimeter,

A*
R* = A% (60)

Numerical solution of Egs. 54 and 55 was achieved by bringing the

residuals RC and RM close to zero for all channel elements in a reach at
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each time step while maintaining the specified relation between downstream
depth and discharge, Eqs. 63-65. 1In the present study,
-4

R. <10 (61)

Ry, _<q1o"4 (62)

5.1.4 Nondimensional downstream boundary conditions.
In terms of the previously defined dimensionless variables,
the normal-depth downstream boundary condition (Eq. 45) is given by the

equation

The critical-depth stage-discharge relation Eq. 47, expressed in dimension-

less terms is

—~
1 A¥ ‘

¢ =5 ,A—— (64)
0

whereas, the weir equation, Eq. 46, reduces to the following implied relation-

ship between dimensionless downstream depth and discharge,
2
*

2/3
poomg? e 33 (L) ()
2A* W

5.1.5 Reduction of governing equations to differential form.
If none of the pertinent functions are discontinuous with
distance or time (no bores), Eqs. 54 and 55 can be reduced to partial differential
equations simply by division by 8x* and going to the limit as &x* - O,

§t* - 0. The result is

3Q*  BA* |
ox* T agr T 47 =0 (66)
2
2 (30 3 q* ) Sh* ;
* _ % % * * D% =
WO (Bt* gy A*z u* q*¥j + A ryera SF D 0 (67)

the form of Eqs. 1 and 2, when tributary inflow q* is negligible.
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5.2 The zero-inertia equations.
As the Froude number characteristic of the channel under base flow
conditions is reduced, the importance of the inertial terms (in parentheses,
on the left side of Eq. 67) declines. As an approximation, if F* is set to
zero in Eqs. 67 or 55, the so-called zero-inertia or equilibrium model (because
pressure, weight, and drag forces are in equilibrium) results. This is a com-
bination of the continuity equation, Eq. 66 or its elementary-volume-integrated

counterpart Eq. 55, and the partial differential equation,

*

or its elementary-volume-integrated counterpart.

5.3 The normal-depth kinematic-wave model.
If, in addition, the depth gradient is much smaller than the bottom

slope, it too may be neglected. Then Eq. 68 becomes

22
S (69)

or
Q* = K¥ /EE' (70)
a normal-depth stage-discharge relationship. This, inserted into the continuity

equation Eq. 66 or 55 yields one kind of kinematic-wave model.

5.4 Kinematic-wave models.
5.4.1 General theory.
In the material following, the symbols can be understood to
represent either real physical variables or their dimensionless counterparts.
A kinematic-wave model results when any stage-discharge relationship is
introduced into the continuity equation. For example, if a relationship

between discharge and cross-sectional flow area is known
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Q = Q(A,x) (71)
for each point along a river (not necessarily prismatic) and this is inserted
into the continuity equation,

2Q( dA
200, |, B (72)

the result is

anic,t) N % BQgic,t) = q (73)

in which,
_ 9Q(A,x) ‘
T A 7

Introduction of an orthogonal s-n coordinate system inclined at some angle

a(x,t) (see Fig. 4) to the x-axis allows Eq. 73 to be written

3Q 3s , 3Q dn }_(E_Qa_s‘ﬂ%)_ \
35 ox ~ 9n ox  wl\ s at ' on ot/ (75)
in which
as— . .—I—1-=.. 3 . _a_.s__—_ i M @.:
3x - oS a5 o= sin a; =% sin a; —7 cos o (76)
t . s
} \ﬁi
n
S
o
S~
X
Fig. 4. Characteristic coordinates.
Then
v Lsina 22 (sina. L 0Q _
{cosa + — sin o) s (sina - €os a) o - 4 (77)

If for each pair of coordinates x,t o is chosen such that
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tan a = (78)

==

with w dependent upon the relationship between Q and A at that x and t, then
the coefficient of 3Q/%n in Eq. 77 vanishes and the latter becomes the

ordinary differential equation

[1 + tanza] %% = secza Q.__9 (79)

ds cos o
with the differentiation performed with respect to arc length s along a curve
inclined everywhere at the local value of slope 1/w. Now along such a curve
(see Fig. 35),
dQ_dQds __ 1 dg -
dt = ds dt ~ 5in & ds (80)

& | at

dx

Fig. 5. Relation between increments of x, t, and s.

Consequently Eq. 79 can be written

dQ _  3Q(A,x) .
& YT (81)

the differentiation valid along a so-called characteristic curve on which

dx _ 9Q(A,x) ,
dt ~ T A (82)

Physically, these equations can be interpreted as stating that the discharge
at a cross section moving with velocity w increases at the rate wq. 1In a
flow with no tributary inflow, the discharge across such a moving section

remains constant:

dQ _
=0 (83)

If in addition the channel cross section and roughness distribution

therein is the same at all stations, as in the present study, the characteristic
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Fig. 6. Network of characteristic lines in a prismatic channel with no

tributary inflow.

curves are all straight lines and so form the basis of a very simple computa-
tional technique. With Q(A) known, w is known for every point on the inflow
hydrograph and (straight) characteristic curves may be drawn extending from
the t axis as shown in Fig. 6. Along any one of those lines, Q remains con-
stant at the value set by the inflow hydrograph, at the point of emanation
of the line from the t axis. Thus the hydrograph at stations such as X; can

be computed.

5.4.2 Kinematic shocks.
Evidently, with a rising inflow hydrograph and w = 3Q/3A
an increasing function of Q, the characteristic lines converge, and if the
channel is long enough, intersect. Such an intersection constitutes a kine-
matic shock. From the standpoint of kinematic-wave theory, i.e., with strict
adherence to the Q(A) relationship given a priori, a kinematic shock is simply
a discontinuity in water-surface elevation and discharge--an abrupt wave front

moving at the velocity

QL - Q
P (84)

2 1
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Sia

Fig. 7. Formation and propagation of a kinematic shock.

as found from elementary mass-conservation considerations. The subscripts
2 and 1 refer to the high and low sides of the shock, respectively, as in
Fig. 7. As can be seen from Fig. 7a, the shock speed lies between the indi-

vidual velocities of propagation of the two component discharges

W, <W_<W (85)

1 2

S
Qi Wz

P
A

Fig. 7a. Shock speed W, compared to wave speed w.
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The discontinuity propagates at this speed, intersecting, successively,
characteristics each carrying its own value of discharge. Thus, in Fig. 7,

between points 512 and 813,

side and Q2 on its high (upstream) side. Between 813 and 814, it has Q1 on

its low side and Q3 on the high side; Q2 has disappeared from the wave. With

the discontinuity has Ql on its low (downstream)

Q4 < QS’ representing the falling limb of the hydrograph, it is apparent that
the peak value Q3 has disappeared from the floodwave by point 814. In this
way it is seen that kinematic waves can attenuate, as they propagate, through
the mechanism of the kinematic shock.

This phenomenon is complicated by the presence of flood plains. A

typical Q(A) relation for this case can be seen in Fig. 8.

l 2 3 4 S

t
BANK FULL

Fig. 8. Discharge-area relation for channel with floodplains.

The resulting array of characteristic lines is seen in Fig. 9. Evident are
both the extreme dispersal of the wave as it enters the flood plains and the

two shocks, one positive, one negative.
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Fig. 9. Characteristics and shock trajectories in channel with floodplains.

5.5 Modified-Puls technique.
The Modified-Puls technique couples a given relationship between

storage S in a reach and outflow QR from the reach with an expression of
mass conservation in the reach. The latter, nothing more than an integral of
Eq. 66 over the length of the reach, and over an increment of time §t, can
be written

o, - o) + 1 - o)y - qlst =5, - Sy (86)
In Eq. 86 SLR is the storage in the reach at the end of the time increment,
and SJM is the storage at the beginning of the time increment; the weighting
factor 6 is normally taken 6 = 1/2. The quantities QJ, QM’ and SJM are known
from initial conditions or from computation of the previous time step. The
inflow hydrograph gives QL, and the given storage-outflow relation yields
the necessary equation to close the system

Sir = S(Q) (87)

allowing solution for QR.

.4
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The form of these governing equations is unaffected if the symbols are
meant to represent dimensionless rather than dimensioned quantities.

In a variation of the scheme, L and R, and J and M, represent cross sections
bounding a subreach. Then a sequence of solutions of Eqs. 86 and 87 is made
at each time step, starting with the upstream-most subreach and progressing
to the last one in the reach, QR of one subreach comprising QL of its downstream
neighbor.

In the particular variant used in this study, total reach storage was com-
puted for reach outflow, and this total storage was apportioned uniformly
amongst the subreaches, all of equal length. When the water-surface profile
from which reach storage was determined corresponded to uniform flow--a normal
condition for long, prismatic reaches--the Modified-Puls equations 86 and 87
agree with the kinematic-wave equations 72 and 71 with no tributary inflow;

the latter are then simply differential forms of the former.
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6. Graphical Presentation of Data

6.1 Organization.

Results of the routing analyses are shown on Figs. 10-27. All of
the graphs are in terms of dimensionless time, flow, and discharge as described
in sections 2 through 4. Peak discharges (Qm*) are plotted on Figs. 10-15,
peak stages (ym*) on Figs. 16-21, and time of arrival of peak discharge (tQm*)
on Figs. 22-27. These variables are plotted vs. distance down the channel
(x*). Within each set, the first three figures are for the rectangular channel,
and the second three for the channel with flood plains. Within each group of
three, the first is for a normal depth downstream boundary condition, the
second for a weir downstream boundary condition, and the third for a free-
overfall downstream boundary condition. There are several graphs for each
channel configuration representing various inflow hydrograph rise times (tQp*);
these are distinguished by a letter (e.g., 10c). Table 2 provides a con-
venient way of identifying which conditions are presented on which graphs.

6.2 Contents.

Plotted on each graph are one or more continuous lines which depict
the solution of the full St. Venant equations for various Froude numbers ( [F*).
These lines represent the 'true'" solutions at different Froude numbers. Note
that, by definition, the IF* = 0.0 line depicts the ''zero inertia" solution.
When solutions with different Froude numbers are indistinguishable, a single
solution curve is shown and identified by all the Froude numbers for which it
was calculated. Absence of a parameter value implies use of the standard value
F* = 0.2 (see, e.g., Fig. 15b,c). Also shown is a line for the kinematic-
wave approximation, labeled "kw'". Solutions obtained by Modified Puls routing

are indicated by symbols (squares, circles, triangles, etc.). Different symbols
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represent different numbers (N) of subreaches for the Modified Puls technique.
Also shown are the corresponding dimensionless subreach lengths (8x*). When
a Modified Puls result is dependent upon the characteristic Froude number,
that number is given followd by "(MP)'" (see, e.g., Fig. 1la,c).

All curves end at the downstream channel boundary x* = L* (see, e.g.,

Fig. 14d). Where necessary to prevent confusion, curves are labeled with L*
(see, e.g., Fig. 22d).

The dashed curve labeled "wave speed" in Figs. 23-27 refers to the theoretical
time of arrival based on wave velocity as computed by the ratio of incremental
change in outflow to incremental change in storage per unit length, all computed
under steady flow conditions.

6.3 Variable definitions.

The following variables appear on the graphs:

IF* = Froude number characteristic of base-flow conditions
L* = dimensionless channel length
N = number of subreaches used in Modified Puls routing

Qm* = maximum dimensionless discharge
tQm* = dimensionless time of arrival of Qm*
tQP*= dimensionless rise time of the inflow hydrograph
x* = dimensionless distance down the channel
8x* = dimensionless subreach length
y_* = dimensionless maximum stage
Refer to Sections 2 through 4 for definition and discussion of the dimen-
sionless variables.
6.4 Discussion.
Interpretation and discussion of the results presented on Figs. 10-27

may be found in Section 4, 'Analysis of Results'.
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Table 2. Summary of Conditions Presented on the Figures

Type of Distance Downstream vs:
Downstream
Channel Boundary Arrival Time of
Shape Condition Peak Discharge Peak Stage Peak Discharge

Normal Depth Fig. 10a-10g Fig. 16a-16g Fig. 22a-22g

Rectangular Weir Fig. 11a-11f Fig. 17a-17f Fig. 23a-23f

Overfall Fig. 12a-12d Fig. 18a-18d Fig. 24a-244

Normal Depth Fig. 13a-13g Fig. 19a-19g Fig. 25a-25g

Rectangular
with
Flood

Plains

Weir Fig. 14a-14g Fig. 20a-20g Fig. 26a-26g

Overfall Fig. 15a-15e Fig. 2la-21le Fig. 27a-27e
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channel, normal depth downstream boundary condition.
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channel, normal depth downstream boundary condition.
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