One-Dimensional Model for Mud Flows

October 1985
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. **REPORT DATE** (DD-MM-YYYY)
 October 1985

2. **REPORT TYPE**
 Technical Paper

3. **DATES COVERED** (From - To)

4. **TITLE AND SUBTITLE**
 One-Dimensional Model for Mud Flows

5a. **CONTRACT NUMBER**

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**

5e. **TASK NUMBER**

5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**
 David R. Schamber, Robert C. MacArthur

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 US Army Corps of Engineers
 Institute for Water Resources
 Hydrologic Engineering Center (HEC)
 609 Second Street
 Davis, CA 95616-4687

8. **PERFORMING ORGANIZATION REPORT NUMBER**
 TP-109

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR’S ACRONYM(S)**

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**

12. **DISTRIBUTION / AVAILABILITY STATEMENT**
 Approved for public release; distribution is unlimited.

13. **SUPPLEMENTARY NOTES**
 Presented at the American Society of Civil Engineers Hydraulic Division Specialty Conference on Hydraulics and Hydrology in the Small Computer Age, Orlando, Florida, 12-17 August 1985.

14. **ABSTRACT**
 In this paper a transient, one-dimensional model for dynamic flood routing of mud flows is presented. The governing equations of mass and momentum conservation incorporate laminar flow resistance effects and utilize a power law expression to represent the cross-sectional geometry of the channel. The equations are solved by the method of characteristics on fixed time lines and program execution is performed on a microcomputer. Numerical results are compared with published experiment data for a laminar flow, dambreak problem of viscous oil.

15. **SUBJECT TERMS**
 mud and debris flows, one-dimensional unsteady flows, numerical modeling, non-Newtonian fluid properties, Bingham fluids, Laminar flows, high viscosity, high solids concentrations, model verification, method of characteristics, microcomputers

16. **SECURITY CLASSIFICATION OF:**

 a. **REPORT**
 U

 b. **ABSTRACT**
 U

 c. **THIS PAGE**
 U

17. **LIMITATION OF ABSTRACT**
 UU

18. **NUMBER OF PAGES**
 14

19a. **NAME OF RESPONSIBLE PERSON**

19b. **TELEPHONE NUMBER**
One-Dimensional Model for Mud Flows

October 1985

US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616

(530) 756-1104
(530) 756-8250 FAX
www.hec.usace.army.mil

TP-109
Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
ABSTRACT

In this paper a transient, one-dimensional model for dynamic flood routing of mud flows is presented. The governing equations of mass and momentum conservation incorporate laminar flow resistance effects and utilize a power law expression to represent the cross-sectional geometry of the channel. The equations are solved by the method of characteristics on fixed time lines and program execution is performed on a micro-computer. Numerical results are compared with published experimental data for a laminar flow, dambreak problem of a viscous oil.

INTRODUCTION

During the spring of 1983, widespread landslides and debris flows caused an estimated 250 million dollars in damage in the state of Utah. Along a thirty-mile length of the Wasatch Front Mountains, over ninety significant landslides and debris flows sent torrents of mud, debris and water down steep canyons onto residential areas located on alluvial fans at the base of the mountains.

The ability to model these types of events is clearly needed and will be useful in preparing maps which delineate potential flood damage areas. The purpose of this paper is to present a one-dimensional mathematical model which can be used to route a mudflow down a confining channel. Equations of mass and momentum conservation are presented, with frictional resistance terms, which account for the laminar flow of a Bingham plastic fluid. The equations are solved by the method of characteristics on fixed time lines. To verify the model, comparison is made with experimental results of a laminar flow dambreak problem.

GOVERNING EQUATIONS

The flow is governed by the equations of mass and momentum conservation which are given respectively by [6]

1Presented at the ASCE Hydraulic Division Specialty Conference, Hydraulics and Hydrology in the Small Computer Age, Orlando, Florida.
2Associate Professor, Civil Engineering Department, University of Utah, Salt Lake City, Utah 84112
3Research Hydraulic Engineer, U.S. Army Corps of Engineers, The Hydrologic Engineering Center, 609 Second Street, Davis, California 95616
in which \(x \) = coordinate along the channel; \(t \) = time; \(A \) = cross-sectional area of flow; \(V \) = average velocity; \(B \) = channel top width; \(y \) = flow depth; \(A' \) = rate of change of area with \(x \) for a constant depth (nonprismatic term); \(g \) = gravitational constant; \(S_o \) = slope of the channel bottom; and \(S_f \) = resistance slope.

In most hydraulic applications, the flow is turbulent and \(S_f \) is generally given by Manning's equation. The flow of mud presents an entirely different situation. DeLeon and Jeppson [1] summarize the data from a number of debris flows, mud flows and pipe sludge flows and conclude that the flow is usually laminar. By fitting a line through a number of data points, these authors postulate a power law relation between the Chezy coefficient and the flow Reynolds number. Jeyapalan et al. [2], in their analysis of mine tailing dam failures, develop an expression for \(S_f \) by analyzing the laminar flow of materials with Bingham plastic fluid characteristics. Other researchers, [1,5] have noted a similar behavior for mud flows, which often exhibit plug like flow with a critical yield stress. In this work, the resistance term for a Bingham plastic fluid is adopted [2]. Mathematically,

\[
S_f = \frac{2\eta_p Vh^2}{\gamma y^2R^2} + \frac{\tau_y h}{\gamma yR}
\]

in which \(\eta_p \) = plastic viscosity; \(\gamma \) = unit weight of the fluid; \(\tau_y \) = yield stress of the fluid; \(h \) = hydraulic depth; and \(R \) = hydraulic radius. The first term on the right hand side of Eq. 3 is similar in form to the expression postulated by DeLeon and Jeppson [1].

Equations 1 and 2 are hyperbolic in nature and have the property that, through linear combination, they can be reduced to equations involving differentiation in one less direction than the original equations [6]. This characteristic form for Eqs. 1 and 2 is given by

\[
\frac{dt}{dt} (V + \omega) = g(S_o - S_f) + \frac{c}{A} VA' + (V + c)L_a \frac{g}{c^2} \frac{c}{\delta x} d\tau
\]

\[
\frac{dx}{dt} = V + c
\]

in which \(c \) = celerity of an elementary gravity wave is given by

\[
c = \left(\frac{gA}{B}\right)^{\frac{1}{2}}
\]
and \(\omega \) = Escoffier stage variable is given by

\[
\omega = \int_{0}^{y} \frac{g}{c} \, d\eta
\]

(7)

Eqs. 4 comprise a forward (+) and a backward (-) characteristic equation valid on the curves in the x-t plane defined by Eqs. 5, respectively.

A power law expression is used to represent the top width and area in Eqs. 4 and 5. Mathematically,

\[
B = (k_L + k_R) \, y^m
\]

(8)

\[
A = \left(\frac{k_L + k_R}{m + 1} \right) \, y^{m+1}
\]

(9)

Here \(k_L \) and \(k_R \) define the left and right width at any depth \(y \) and the exponent \(m \) defines the shape of the cross-section. The parameters \(k_L \), \(k_R \) and \(m \) can be specified functions of distance \(x \) to capture the nonprismatic nature of the channel. Using the definitions of Eqs. 8 and 9, Eqs. 6 and 7 reduce to

\[
c = \left(\frac{g}{m + 1} \right)^{1/2}
\]

(10)

\[
\omega = 2[g(m + 1)y]^{1/2}
\]

(11)

NUMERICAL SOLUTION

The numerical solution of Eqs. 4 and 5 is developed with reference to Fig. 1. At a sequence of points \(x_k \), \(k = 1,2,\ldots,n \), at some time \(t_i \), the solution is known. It is desired to find the solution for the points \(x_k \) on time line \(t_{i+1} \), an interval \(\Delta t \) later. The characteristic

Fig. 1 - Characteristics Computational Scheme.
curves in Fig. 1, i.e., L-P and R-P are approximated by parabolas in the x-t plane. With this approximation, the finite difference form of Eqs. 5 is given by

\[\frac{x_p - x_L}{\delta t} = \lambda_L (V_L + c_L) + \lambda_p (V_p + c_p) \] \tag{12}

\[\frac{x_p - x_R}{\delta t} = \lambda_R (V_R - c_R) + \lambda_p (V_p - c_p) \] \tag{13}

in which \(\lambda_L = \lambda_p = \lambda_R = \frac{1}{2} \). The forward and backward version of Eqs. 4 are also written in finite difference form. Mathematically,

\[\frac{(V_p + \omega_p) - (V_L + \omega_L)}{\delta t} = \lambda_L F^+_L + \lambda_p F^+_p \] \tag{14}

\[\frac{(V_p - \omega_p) - (V_R - \omega_R)}{\delta t} = \lambda_R F^-_R + \lambda_p F^-_p \] \tag{15}

in which

\[F^\pm = g(S_0 - S_f) + \frac{c}{A} V_B \frac{V}{x} \pm (V \pm c) \int_0^Y \frac{g}{c^2} \frac{\partial c}{\partial x} \, \mathrm{d}n \] \tag{16}

The set of four nonlinear equations, Eqs. 12-15, determines the locations of points L and R as well as \(V_p \) and \(y_p \). The variation of \(y_L \), \(V_L \), \(y_R \) and \(V_R \) is determined by parabolic interpolation along time line \(t_i \). A simple search procedure assures that the interpolation nodes \((x_{k-1}, x_k, x_{k+1})\) always straddle the points in question, so that extrapolation is avoided.

Eqs. 12-15 are solved iteratively by Newton's method \([4]\). A first guess to the solution is found by solving a linear version of Eqs. 12-15 in which \(\lambda_L = \lambda_R = 1 \) and \(\lambda_p = 0 \). The equations are solved at a number of points between \(x_1 \) and \(x_n \) to define the wave profile. At the boundaries of the flow domain, if only the velocity or depth is specified, the remaining unknown is determined by application of the appropriate backward or forward characteristic equation. For the case of advance on a dry bed, Whitham's assumption is used, i.e., \(V_B = V_{Bn-1} \).

During the early stages of flooding, the effects of boundary roughness and channel slope are small. A solution which ignores friction and slope is therefore used as the initial condition from which to start the numerical solution.
RESULTS

The model is compared with several dambreak experiments performed by Jeyapalan et al. [3]. In these experiments, oil is used to simulate a laminar flow of a viscous fluid. The experiments are conducted in a 6 foot long glass flume which has a constant width of 1 foot. The dam is located 4 feet from the downstream edge of the flume giving a reservoir length of 2 feet. Table I gives the parameters characterizing the examples presented herein. The test numbers listed in Table I correspond to several of the flood examples presented in [3]. In Table I, \(H_0 \) = depth of oil immediately behind the dam before failure; \(\beta \) = bottom slope of the flume; and for all cases \(\gamma = 0 \).

Results of the numerical simulation are presented in Figs. 2-3 and compared with the available experimental data. The agreement between theory and experiment is generally good. The numerical algorithm is programmed in Fortran and executed on an Apple Macintosh micro-computer. Computation times are on the order of 0.25-0.34 seconds per computational node.

<table>
<thead>
<tr>
<th>Test No.</th>
<th>(H_0) (ft)</th>
<th>(\beta) (degrees)</th>
<th>(\gamma) (1b/ft(^3))</th>
<th>(\eta) (1b sec/ft(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.50</td>
<td>0</td>
<td>56</td>
<td>0.078</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>0</td>
<td>56</td>
<td>0.078</td>
</tr>
<tr>
<td>7</td>
<td>0.50</td>
<td>0</td>
<td>56</td>
<td>0.156</td>
</tr>
</tbody>
</table>

Fig. 2 - Wave Advance.
Fig. 3 - Wave Profile at t=1.95 sec., Test 2.

ACKNOWLEDGMENT

This research is supported by The Hydrologic Engineering Center, Army Corps of Engineers.

REFERENCES

TP-70 Corps of Engineers Experience with Automatic Calibration of a Precipitation-Runoff Model
TP-71 Determination of Land Use from Satellite Imagery for Input to Hydrologic Models
TP-72 Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flow and Water Quality
TP-73 Flood Mitigation Planning Using HEC-SAM
TP-74 Hydrographs by Single Linear Reservoir Model
TP-75 HEC Activities in Reservoir Analysis
TP-76 Institutional Support of Water Resource Models
TP-77 Investigation of Soil Conservation Service Urban Hydrology Techniques
TP-78 Potential for Increasing the Output of Existing Hydroelectric Plants
TP-79 Potential Energy and Capacity Gains from Flood Control Storage Reallocation at Existing U.S. Hydropower Reservoirs
TP-80 Use of Non-Sequential Techniques in the Analysis of Power Potential at Storage Projects
TP-81 Data Management Systems of Water Resources Planning
TP-82 The New HEC-1 Flood Hydrograph Package
TP-83 River and Reservoir Systems Water Quality Modeling Capability
TP-84 Generalized Real-Time Flood Control System Model
TP-85 Operation Policy Analysis: Sam Rayburn Reservoir
TP-86 Training the Practitioner: The Hydrologic Engineering Center Program
TP-87 Documentation Needs for Water Resources Models
TP-88 Reservoir System Regulation for Water Quality Control
TP-89 A Software System to Aid in Making Real-Time Water Control Decisions
TP-90 Calibration, Verification and Application of a Two-Dimensional Flow Model
TP-91 HEC Software Development and Support
TP-92 Hydrologic Engineering Center Planning Models
TP-93 Flood Routing Through a Flat, Complex Flood Plain Using a One-Dimensional Unsteady Flow Computer Program
TP-94 Dredged-Material Disposal Management Model
TP-95 Infiltration and Soil Moisture Redistribution in HEC-1
TP-96 The Hydrologic Engineering Center Experience in Nonstructural Planning
TP-97 Prediction of the Effects of a Flood Control Project on a Meandering Stream
TP-98 Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience
TP-99 Reservoir System Analysis for Water Quality
TP-100 Probable Maximum Flood Estimation - Eastern United States
TP-101 Use of Computer Program HEC-5 for Water Supply Analysis
TP-102 Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating
TP-103 Modeling Water Resources Systems for Water Quality
TP-104 Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
TP-105 Flood-Runoff Forecasting with HEC-IF
TP-106 Dredged-Material Disposal System Capacity Expansion
TP-107 Role of Small Computers in Two-Dimensional Flow Modeling
TP-108 One-Dimensional Model for Mud Flows
TP-109 Subdivision Froude Number
TP-110 HEC-5Q: System Water Quality Modeling
TP-111 New Developments in HEC Programs for Flood Control
TP-112 Modeling and Managing Water Resource Systems for Water Quality
TP-113 Accuracy of Computer Water Surface Profiles - Executive Summary
TP-114 Application of Spatial-Data Management Techniques in Corps Planning
TP-115 The HEC's Activities in Watershed Modeling
TP-116 HEC-1 and HEC-2 Applications on the Microcomputer
TP-117 Real-Time Snow Simulation Model for the Monongahela River Basin
TP-118 Multi-Purpose, Multi-Reservoir Simulation on a PC
TP-119 Technology Transfer of Corps' Hydrologic Models
TP-120 Development, Calibration and Application of Flood Forecasting Models for the Allegheny River Basin
TP-121 The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
TP-122 Developing and Managing a Comprehensive Reservoir Analysis Model
TP-123 Review of U.S. Army corps of Engineering Involvement With Alluvial Fan Flooding Problems
TP-124 An Integrated Software Package for Flood Damage Analysis
TP-125 The Value and Depreciation of Existing Facilities: The Case of Reservoirs
TP-126 Floodplain-Management Plan Enumeration
TP-127 Two-Dimensional Floodplain Modeling
TP-128 Status and New Capabilities of Computer Program HEC-6: "Scour and Deposition in Rivers and Reservoirs"
TP-129 Estimating Sediment Delivery and Yield on Alluvial Fans
TP-130 Hydrologic Aspects of Flood Warning - Preparedness Programs
TP-131 Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
TP-132 Predicting Deposition Patterns in Small Basins
TP-133 Annual Extreme Lake Elevations by Total Probability Theorem
TP-134 A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
TP-135 Prescriptive Reservoir System Analysis Model - Missouri River System Application
TP-136 A Generalized Simulation Model for Reservoir System Analysis
TP-137 The HEC NexGen Software Development Project
TP-138 Issues for Applications Developers
TP-139 HEC-2 Water Surface Profiles Program
TP-140 HEC Models for Urban Hydrologic Analysis
<table>
<thead>
<tr>
<th>TP-142</th>
<th>Systems Analysis Applications at the Hydrologic Engineering Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-143</td>
<td>Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds</td>
</tr>
<tr>
<td>TP-144</td>
<td>Review of GIS Applications in Hydrologic Modeling</td>
</tr>
<tr>
<td>TP-145</td>
<td>Application of Rainfall-Runoff Simulation for Flood Forecasting</td>
</tr>
<tr>
<td>TP-146</td>
<td>Application of the HEC Prescriptive Reservoir Model in the Columbia River Systems</td>
</tr>
<tr>
<td>TP-147</td>
<td>HEC River Analysis System (HEC-RAS)</td>
</tr>
<tr>
<td>TP-148</td>
<td>HEC-6: Reservoir Sediment Control Applications</td>
</tr>
<tr>
<td>TP-149</td>
<td>The Hydrologic Modeling System (HEC-HMS): Design and Development Issues</td>
</tr>
<tr>
<td>TP-150</td>
<td>The HEC Hydrologic Modeling System</td>
</tr>
<tr>
<td>TP-151</td>
<td>Bridge Hydraulic Analysis with HEC-RAS</td>
</tr>
<tr>
<td>TP-152</td>
<td>Use of Land Surface Erosion Techniques with Stream Channel Sediment Models</td>
</tr>
<tr>
<td>TP-153</td>
<td>Risk-Based Analysis for Corps Flood Project Studies - A Status Report</td>
</tr>
<tr>
<td>TP-154</td>
<td>Modeling Water-Resource Systems for Water Quality Management</td>
</tr>
<tr>
<td>TP-155</td>
<td>Runoff simulation Using Radar Rainfall Data</td>
</tr>
<tr>
<td>TP-156</td>
<td>Status of HEC Next Generation Software Development</td>
</tr>
<tr>
<td>TP-157</td>
<td>Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers</td>
</tr>
<tr>
<td>TP-158</td>
<td>Corps Water Management System (CWMS)</td>
</tr>
<tr>
<td>TP-159</td>
<td>Some History and Hydrology of the Panama Canal</td>
</tr>
<tr>
<td>TP-160</td>
<td>Application of Risk-Based Analysis to Planning Reservoir and Levee Flood Damage Reduction Systems</td>
</tr>
<tr>
<td>TP-161</td>
<td>Corps Water Management System - Capabilities and Implementation Status</td>
</tr>
</tbody>
</table>