Status and New Capabilities of Computer Program HEC-6: Scour and Deposition in Rivers and Reservoirs

June 1990
Status and New Capabilities of Computer Program HEC-6: Scour and Deposition in Rivers and Reservoirs

Last year the Hydrologic Engineering Center (HEC) and the Waterways Experiment Station (WES) incorporated the results from more than ten years of research and development into a new version of computer program HEC-6: "Scour and Deposition in Rivers and Reservoirs" (HEC, 1977). Because of the extensive modifications made to HEC-6, an entirely new User's Manual was also prepared. HEC released a Beta Test Version of the program in the Fall of 1989, for field testing. Public release of the new version of HEC-6 is scheduled for September 1990. This paper describes the present status of the programs as of April 1990, the expanded capabilities, and the improved documentation to be included in the forthcoming release of computer programs HEC-6.

Abstract Terms
- Sediment transport modeling
- Scour
- Deposition
- One-dimensional mobile boundary model
- Rivers and reservoirs
- Armoring calculations
- Total bed material load

Distribution / Availability Statement
Approved for public release; distribution is unlimited.

REFERENCES

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
Status and New Capabilities of Computer Program HEC-6: Scour and Deposition in Rivers and Reservoirs

June 1990

US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616

(530) 756-1104
(530) 756-8250 FAX
www.hec.usace.army.mil
Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
STATUS AND NEW CAPABILITIES OF COMPUTER PROGRAM HEC-6: "SCOUR AND DEPOSITION IN RIVERS AND RESERVOIRS"

Robert C. MacArthur,1 M. ASCE
David T. Williams,2 M. ASCE
William A. (Tony) Thomas,3 M. ASCE

Abstract

Last year the Hydrologic Engineering Center (HEC) and the Waterways Experiment Center (WES) incorporated the results from more than ten years of research and development into a new version of computer program HEC-6: "Scour and Deposition In Rivers and Reservoirs" (HEC, 1977). Because of the extensive modifications made to HEC-6, an entirely new User's Manual was also prepared. HEC released a Beta Test Version of the program in the fall of 1989, for field testing. Public release of the new version of HEC-6 is scheduled for September 1990. This paper describes the present status of the program as of April 1990, the expanded capabilities, and the improved documentation to be included in the forthcoming release of computer program HEC-6.

General Background

Computer program HEC-6, "Scour and Depositions in Reservoirs" is a one-dimensional, movable boundary, open channel flow model designed to simulate streambed profile changes over fairly long time spans (typically years). The first nation-wide distribution of the program was made in 1973 and again in 1977 after considerable expansion and improvement was made to the original code. The Hydrologic Engineering Center has maintained and distributed the HEC-6 computer program, instructional materials and support documents since then. Research and development to further expand the capabilities of HEC-6 continues to occur at the Hydrologic Engineering Center and the Waterways Experiment Station. HEC-6 has become the "Industry Standard" for the Corps of Engineers as their primary mobile boundary model for one-dimensional applications.

Last fall (1989) a new version of computer program HEC-6 that incorporates results from more than ten years of research and development was released to select users for field testing. Along with the new program an entirely new User's Manual was also prepared. At the present time sixteen Corps District offices and the Waterways Experiment Station, are applying and testing the new "Beta Test Version" of the program for on-going project applications.

1 Research Hydraulic Engineer, The Hydrologic Engineering Center, 609 Second Street, Davis, CA 95616 USA
2 Chief Executive Officer, WEST Consultants, Inc., 2111 Palomar Airport Road, Suite 180, Carlsbad, CA 92009 USA
3 Hydraulic Engineer, Waterways Experiment Station, (CEWES-HR-M), P.O. Box 631, Vicksburg, MS 39181-0631 USA

Computer Requirements

The Beta Test Version operates on both microcomputers and Harris mainframe machines. HEC-6 has the following characteristics and requirements for IBM-compatible microcomputers:

- 640 Kilobytes (KB) of Random Access Memory (RAM) with 565 Kilobytes free.
- MS DOS 2.1 or greater Operating System.
- A math coprocessor (8087, 80287 or equivalent) is required.
- One 5 1/4 inch floppy diskette drive and a 10 Megabyte (or larger) hard disk.

Users may apply COED (the Corps of Engineers Editor, HEC, 1987) or any other editor to create and edit input files, as long as they conform to the standard HEC-6 format requirements.

Beta Test Version files include the HEC-6 Executable Program, Test Input Data files, and Output files that correspond to the example input. The new User’s Manual has been completely rewritten and includes: (1) installation and application instructions, (2) sections for "notation" that are indexed to the location in the manual where the terms are defined and used, (3) expanded discussions of the theory, (4) many useful diagrams and figures, (5) an "examples section" describing different problems and solutions using HEC-6, (6) an appendix containing the expanded input description, and (7) a complete glossary of mobile boundary modeling terminology.

Numerical Approach

The HEC-6 model is based on one-dimensional, gradually varied flow hydraulics and sediment transport theory. There is no provision for simulating the development of channel meanders or specifying lateral distributions of sediment load across a cross section. A continuous sequence of flows (hydrograph) is segmented into a series of steady flow "events" of variable duration. For each flow, the conservation of energy equation (Eq. 1) is solved to determine the water surface profile and pertinent hydraulic parameters such as energy slope, velocity, depth, width, etc. at each cross section. Potential sediment transport characteristics and rates (including sediment load, gradation of the load, gradation of the bed surface materials and depth of scour and/or deposition) are then computed at each cross section via the sediment continuity equation (Eq. 2) and user-selected transport functions of the form of Eq. 3. The numerical technique used to solve Eq. 1 is commonly called the Standard Step Method (HEC, 1985; Henderson, 1966; French, 1985). An explicit six-point finite difference method is used to solve Equation 2 as functions of time and space. Many empirical relationships of the form of Equation 3 are available for estimating sediment transport rates. These rates, combined with the duration of the flow, allow for volumetric accounting of sediment within each reach. The amount of scour or deposition within each reach is computed and the cross section geometry is then adjusted accordingly. The computations proceed to the next flow in the sequence and the cycle is repeated beginning with the updated geometry. The sediment calculations are done by grain size fraction thereby allowing for the simulation of hydraulic sorting and armoring (although the details of these processes are not well known).
Conservation of Energy:
\[\frac{\partial H}{\partial X} + \frac{\partial (a \frac{V^2}{2g})}{\partial X} = S \]

where
- \(H \) = water-surface elevation, ft
- \(X \) = distance in the direction of flow, ft
- \(a \) = coefficient for the horizontal distribution of velocity
- \(V \) = average flow velocity, ft/sec
- \(g \) = acceleration due to gravity, ft/sec^2
- \(S \) = slope of energy grade line

Continuity of Sediment Material:
\[\frac{\partial G}{\partial X} + B \cdot \frac{\partial y_s}{\partial t} = q_s \]

where
- \(G \) = rate of sediment movement, ft^3/day
- \(B \) = width of movable bed, ft
- \(y_s \) = change in bed surface elevation, ft
- \(t \) = time, days
- \(q_s \) = lateral inflow of sediment, ft^3/ft/day

Sediment Transport Function:
\[G = f(V, y, B, S, T, d_{eff}, d_i, P_i) \]

where
- \(y \) = effective depth of flow, ft
- \(T \) = water temperature, °F
- \(d_{eff} \) = effective grain size of sediment in size class i
- \(d_i \) = geometric mean of class interval
- \(P_i \) = percentage of i^{th} size class in the bed

Data Requirements and Program Capabilities

Data requirements include: (1) geometry information (in typical HEC-2 format), including channel shape, cross section spacing, bed slope, and bed roughness, (2) hydraulic information, including a continuous sequence of flows and durations, water temperature and specification of hydraulic controls and/or boundary conditions, and (3) sediment information, including bed material characteristics, inflowing load quantity and grain size distribution, bed armoring characteristics and selection of the sediment transport function or functions to be used for simulating sediment movement (scour and deposition).

General program capabilities are listed below. More detailed explanations of the theory and methods used for computing sediment transport quantities are found in the new users manual (HEC, 1990, Draft).

Geometry - The model is capable of simulating sediment transport in dendritic (network) river systems. A total of ten main stem, tributary, and local inflow and outflow points can be modeled simultaneously.
Hydraulics - Water surface profiles and channel hydraulic properties are determined by the standard step method (the simultaneous iterative solution of the one-dimensional energy equation and Manning's equation, HEC, 1985). Manning's "n" values for overbank and channel areas are specified by discharge or elevation. Manning's "n" within the channel can be adjusted to reflect bed material roughness by Limerinos' (1970) method. Expansion and contraction losses are included in the determination of head losses between each cross section and may be adjusted at any location along a study reach.

For each computational event, the starting water surface elevation at the downstream boundary is determined by a rating curve or a user specified water surface elevation. If desired, the downstream rating curve and any rating curves throughout the study area can change with time by specifying a new rating curve in the hydrologic data set.

Channel conveyance limits, flow containment within levees, ineffective flow areas, and overtopping of levees (but NOT split flow) are simulated in a manner similar to HEC-2. Supercritical flow is approximated using normal depth approximations, although, sediment transport phenomena occurring in supercritical reaches are not explicitly depicted by HEC-6. Detailed bridge hydraulics capabilities, like those in HEC-2, are not available within HEC-6.

HEC-6 can also be executed in a fixed-bed mode, similar to HEC-2, in which only steady water surface profiles are computed with no consideration of sediment transport effects in the channel.

Sediment Transport - Sediment transport effects are considered for all ranges of flows and for sediment grain sizes ranging from clays, 0.004 mm and finer, to gravels 64 mm in diameter. Sediment sizes larger than 64 mm may exist in a gravel bed stream, but they are not transported by the functions presently available in HEC-6. Fine clay and silt materials up to 0.0625 mm are resuspended (scoured) using Ariathurai's (1976) adaptation of Parthenaides' (1965) methods. Deposition of fine sediment material is simulated using Krone's (1962) relationships. User's choose the sediment transport function they wish to apply for a particular application. The twelve bed material load transport functions presently available in the Beta Test Version include:

a. Toffaleti's (1969) Relationship
b. Madden's (1963) modification (unpublished) of Laursen's (1958) Relationship
c. Yang's Stream Power for Sands Relation (1972)
d. Duboys (Brown, 1950)
e. Ackers-White (1973)
f. Colby (1964)
g. Meyer-Peter and Muller (1948)
h. Toffaleti (1969) and Schoklitsch (1930)
i. A combination of Toffaleti (1969) and Meyer-Peter and Muller (1948)
k. Parthenaides (1965), Ariathurai (1976) and Krone (1962) methods for cohesive sediments
l. User specified curves for transport based on observed data

The above methods, except for method (a), utilize Colby's (1964) method for adjusting the sediment transport potential based on high suspended load concentration. Armoring and the destruction of the armor layer is simulated using Gessler's (1970)
approach. Simulation of non-eroding geological controls and grade control structures is possible by specifying the elevation of the non-eroding model bottom. The lateral limits of deposition (movable bed limits) are automatically set according to the location of the water surface and high ground rather than a fixed width. Scour is limited laterally within specified limits or the computed water elevation, whichever is less. Sediment inflowing load curves for the main river and its tributaries can now vary with time. Water and sediment diversion (distributary flow) is possible at point locations along the main stem.

Other Enhancements

Many other options and features are available such as the capability to simulate channel dredging. HEC is presently developing a "Graphical Interface Program" (GIP) that prepares data for the HEC-DSS (DISPLAY) [HEC, 1987], system for graphical display of computed results. The user's manual has also been completely rewritten to provide more explanation of the theory and procedures available to users.

Summary

HEC and WES are working to release a new version of HEC-6 that incorporates the improvements and results from research and development conducted during the last decade. The following major additions and improvements are available with the new release of the HEC-6 computer program package:

1. Capability to simulate sediment transport in dendritic (network) river systems.
2. Lateral limits of scour and deposition (movable bed limits) are automatically set at each cross section according to the location of the water surface and high ground rather than a fixed width.
3. User's may choose any one of twelve different sediment transport functions.
4. Resuspension of silts and clays is now available.
5. Sorting and armoring algorithms have been improved.
6. HEC-DSS/DISPLAY for graphical display and data manipulation is being developed.
7. The user's manual has been updated and completely rewritten.

Future research activities include the investigation of (1) lateral migration, (2) coupling of boundary roughness and bed forms with sediment transport, (3) use of HEC-2 for hydraulic input, and (4) inclusion of HEC-6 within an integrated system of river analysis programs driven by digital terrain data and operated within the Corps' contemporary CADD workstation environment.

Acknowledgements

The Hydrologic Engineering Center is grateful to the staff at the Waterways Experiment Station (CEWES-HR-M), to WEST Consultants, and to Ms. Joan Tinios from the Hydrologic Engineering Center (CEWRC-HEC) for their hard work and dedication to make the new version of HEC-6 available.
References

TP-1	Use of Interrelated Records to Simulate Streamflow	
TP-2	Optimization Techniques for Hydrologic Engineering	
TP-3	Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs	
TP-4	Functional Evaluation of a Water Resources System	
TP-5	Streamflow Synthesis for Ungaged Rivers	
TP-6	Simulation of Daily Streamflow	
TP-7	Pilot Study for Storage Requirements for Low Flow Augmentation	
TP-8	Worth of Streamflow Data for Project Design - Pilot Study	
TP-9	Economic Evaluation of Reservoir System Accomplishments	
TP-10	Hydrologic Simulation in Water-Yield Analysis	
TP-11	Survey of Programs for Water Surface Profiles	
TP-12	Hypothetical Flood Computation for a Stream System	
TP-13	Maximum Utilization of Scarce Data in Hydrologic Design	
TP-14	Techniques for Evaluating Long-Term Reservoir Yields	
TP-15	Hydrostatistics - Principles of Application	
TP-16	A Hydrologic Water Resource System Modeling Techniques	
TP-17	Hydrologic Engineering Techniques for Regional Water Resources Planning	
TP-18	Estimating Monthly Streamflows Within a Region	
TP-19	Suspended Sediment Discharge in Streams	
TP-20	Computer Determination of Flow Through Bridges	
TP-21	An Approach to Reservoir Temperature Analysis	
TP-22	A Finite Difference Methods of Analyzing Liquid Flow in Variably Saturated Porous Media	
TP-23	Uses of Simulation in River Basin Planning	
TP-24	Hydroelectric Power Analysis in Reservoir Systems	
TP-25	Status of Water Resource System Analysis	
TP-26	System Relationships for Panama Canal Water Supply	
TP-27	System Analysis of the Panama Canal Water Supply	
TP-28	Digital Simulation of an Existing Water Resources System	
TP-29	Computer Application in Continuing Education	
TP-30	Drought Severity and Water Supply Dependability	
TP-31	Development of System Operation Rules for an Existing System by Simulation	
TP-32	Alternative Approaches to Water Resources System Simulation	
TP-33	System Simulation of Integrated Use of Hydroelectric and Thermal Power Generation	
TP-34	Optimizing flood Control Allocation for a Multipurpose Reservoir	
TP-35	Computer Models for Rainfall-Runoff and River Hydraulic Analysis	
TP-36	Evaluation of Drought Effects at Lake Atitlan	
TP-37	Downstream Effects of the Levee Overtopping at Wilkes-Barre, PA, During Tropical Storm Agnes	
TP-38	Water Quality Evaluation of Aquatic Systems	
TP-39	A Method for Analyzing Effects of Dam Failures in Design Studies	
TP-40	Storm Drainage and Urban Region Flood Control Planning	
TP-41	HEC-5C, A Simulation Model for System Formulation and Evaluation	
TP-42	Optimal Sizing of Urban Flood Control Systems	
TP-43	Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems	
TP-44	Sizing Flood Control Reservoir Systems by System Analysis	
TP-45	Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin	
TP-46	Spatial Data Analysis of Nonstructural Measures	
TP-47	Comprehensive Flood Plain Studies Using Spatial Data Management Techniques	
TP-48	Direct Runoff Hydrograph Parameters Versus Urbanization	
TP-49	Experience of HEC in Disseminating Information on Hydrological Models	
TP-50	Effects of Dam Removal: An Approach to Sedimentation	
TP-51	Design of Flood Control Improvements by Systems Analysis: A Case Study	
TP-52	Potential Use of Digital Computer Ground Water Models	
TP-53	Development of Generalized Free Surface Flow Models Using Finite Element Techniques	
TP-54	Adjustment of Peak Discharge Rates for Urbanization	
TP-55	The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers	
TP-56	Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models	
TP-57	Flood Damage Assessments Using Spatial Data Management Techniques	
TP-58	A Model for Evaluating Runoff-Quality in Metropolitan Master Planning	
TP-59	Testing of Several Runoff Models on an Urban Watershed	
TP-60	Operational Simulation of a Reservoir System with Pumped Storage	
TP-61	Technical Factors in Small Hydropower Planning	
TP-62	Flood Hydrograph and Peak Flow Frequency Analysis	
TP-63	HEC Contribution to Reservoir System Operation	
TP-64	Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study	
TP-65	Feasibility Analysis in Small Hydropower Planning	
TP-66	Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems	
TP-67	Hydrologic Land Use Classification Using LANDSAT	
TP-68	Interactive Nonstructural Flood-Control Planning	
TP-69	Critical Water Surface by Minimum Specific Energy Using the Parabolic Method	
TP-70	Corps of Engineers Experience with Automatic Calibration of a Precipitation-Runoff Model	
TP-71	Determination of Land Use from Satellite Imagery for Input to Hydrologic Models	
TP-72	Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flow and Water Quality	
TP-73	Flood Mitigation Planning Using HEC-SAM	
TP-74	Hydrographs by Single Linear Reservoir Model	
TP-75	HEC Activities in Reservoir Analysis	
TP-76	Institutional Support of Water Resource Models	
TP-77	Investigation of Soil Conservation Service Urban Hydrology Techniques	
TP-78	Potential for Increasing the Output of Existing Hydroelectric Plants	
TP-81	TP-105	Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
TP-106	Flood-Runoff Forecasting with HEC-1F	
TP-107	Dredged-Material Disposal System Capacity Expansion	
TP-108	Role of Small Computers in Two-Dimensional Flow Modeling	
TP-109	One-Dimensional Model for Mud Flows	
TP-110	Subdivision Froude Number	
TP-111	HEC-5Q: System Water Quality Modeling	
TP-112	New Developments in HEC Programs for Flood Control	
TP-113	Modeling and Managing Water Resource Systems for Water Quality	
TP-114	Accuracy of Computer Water Surface Profiles - Executive Summary	
TP-115	Application of Spatial-Data Management Techniques in Corps Planning	
TP-116	The HEC’s Activities in Watershed Modeling	
TP-117	HEC-1 and HEC-2 Applications on the Microcomputer	
TP-118	Real-Time Snow Simulation Model for the Monongahela River Basin	
TP-119	Multi-Purpose, Multi-Reservoir Simulation on a PC	
TP-120	Technology Transfer of Corps’ Hydrologic Models	
TP-121	Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin	
TP-122	The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data	
TP-123	Developing and Managing a Comprehensive Reservoir Analysis Model	
TP-124	Review of U.S. Army corps of Engineering Involvement With Alluvial Fan Flooding Problems	
TP-125	An Integrated Software Package for Flood Damage Analysis	
TP-126	The Value and Depreciation of Existing Facilities: The Case of Reservoirs	
TP-127	Floodplain-Management Plan Enumeration	
TP-128	Two-Dimensional Floodplain Modeling	
TP-129	Status and New Capabilities of Computer Program HEC-6: “Scour and Deposition in Rivers and Reservoirs”	
TP-130	Estimating Sediment Delivery and Yield on Alluvial Fans	
TP-131	Hydrologic Aspects of Flood Warning - Preparedness Programs	
TP-132	Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs	
TP-133	Predicting Deposition Patterns in Small Basins	
TP-134	Annual Extreme Lake Elevations by Total Probability Theorem	
TP-135	A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks	
TP-136	Prescriptive Reservoir System Analysis Model - Missouri River System Application	
TP-137	A Generalized Simulation Model for Reservoir System Analysis	
TP-138	The HEC NexGen Software Development Project	
TP-139	Issues for Applications Developers	
TP-140	HEC-2 Water Surface Profiles Program	
TP-141	HEC Models for Urban Hydrologic Analysis	
TP-142 Systems Analysis Applications at the Hydrologic Engineering Center
TP-143 Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds
TP-144 Review of GIS Applications in Hydrologic Modeling
TP-145 Application of Rainfall-Runoff Simulation for Flood Forecasting
TP-146 Application of the HEC Prescriptive Reservoir Model in the Columbia River Systems
TP-147 HEC River Analysis System (HEC-RAS)
TP-148 HEC-6: Reservoir Sediment Control Applications
TP-149 The Hydrologic Modeling System (HEC-HMS): Design and Development Issues
TP-150 The HEC Hydrologic Modeling System
TP-151 Bridge Hydraulic Analysis with HEC-RAS
TP-152 Use of Land Surface Erosion Techniques with Stream Channel Sediment Models

TP-153 Risk-Based Analysis for Corps Flood Project Studies - A Status Report
TP-154 Modeling Water-Resource Systems for Water Quality Management
TP-155 Runoff simulation Using Radar Rainfall Data
TP-156 Status of HEC Next Generation Software Development
TP-157 Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers
TP-158 Corps Water Management System (CWMS)
TP-159 Some History and Hydrology of the Panama Canal
TP-160 Application of Risk-Based Analysis to Planning Reservoir and Levee Flood Damage Reduction Systems
TP-161 Corps Water Management System - Capabilities and Implementation Status