
 
 
 
 
 
 

Identifying the Probability 
Distribution of Precipitation Annual 
Maxima for Probabilistic Flood 
Hazard Analysis 
 

Implications of Gumbel’s Extreme Value Theory 
 
 
 
 
 
 
 
 
 
 
 
 
 
August 2020 
 
 
 
 
Approved for Public Release.  Distribution Unlimited. TP-163 
 
  



 Standard Form 298 (Rev. 8/98) 
 Prescribed by ANSI Std. Z39-18 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of 
Defense, Executive Services and Communications Directorate (0704-0188).  Respondents should be aware that notwithstanding any other provision of law, 
no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 
1.  REPORT DATE (DD-MM-YYYY) 
August 2020 

2.  REPORT TYPE 
Technical Paper 

3.  DATES COVERED (From - To) 

4.  TITLE AND SUBTITLE 
Identifying the Probability Distribution of Precipitation Annual 
Maxima for Probabilistic Flood Hazard Analysis:  Implications of 
Gumbel’s Extreme Value Theory 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
Gregory S. Karlovits, U.S. Army Corps of Engineers 
Melvin G. Schaefer, MGS Engineering Consultants 
 

5d.  PROJECT NUMBER 

5e.  TASK NUMBER 

5F.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
US Army Corps of Engineers 
Institute for Water Resources 
Hydrologic Engineering Center (CEIWR-HEC) 
609 Second Street 
Davis, CA  95616-4687 

8.  PERFORMING ORGANIZATION REPORT NUMBER 
TP-163 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSOR/ MONITOR'S ACRONYM(S) 

11.  SPONSOR/ MONITOR'S REPORT NUMBER(S) 

12.  DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 
13.  SUPPLEMENTARY NOTES 
 
14.  ABSTRACT 
Gumbel’s extreme value theory is examined in light of L-moments technology and the L-Moment Ratio Diagram 
(LMRD) for the case of precipitation annual maxima. Identification of the probability distribution for precipitation annual 
maxima for a specific homogeneous storm type is an important task in the development of a watershed precipitation-
frequency relationship for use in stochastic flood modeling for Risk-Informed Decision-Making (RIDM). Convergence to 
the Generalized Extreme Value (GEV) distribution behaves systematically for parent probability distributions with  
L-skewness and L-kurtosis pairings that reside above or below the GEV curve on the LMRD. Specifically, precipitation 
Peak-Over-Threshold (POT) datasets representing parent distributions for various storm types converge to the GEV 
distribution from below the GEV curve on the LMRD. The degree of convergence, nearness to GEV, is dependent upon 
the number of storm events per year from which the annual maxima are drawn and the mathematical form of the parent 
distribution. The four-parameter Kappa distribution provides a convenient mathematical form for the usual case where 
the resultant probability distribution for precipitation annual maxima is near, but has not yet converged to the GEV 
distribution. 
 
 
 
 
 
 
 
 
 
 
 
15.  SUBJECT TERMS 
Gumbel, extreme value theory, L-moments, regional frequency analysis, probability distribution, storm typing 
16. SECURITY CLASSIFICATION OF: 17. LIMITATION  

 OF 
 ABSTRACT 
 UU 

18. NUMBER 
 OF 
 PAGES 
 20 

19a.  NAME OF RESPONSIBLE PERSON 
 a.  REPORT 

 U 
b.  ABSTRACT 
 U 

c.  THIS PAGE 
 U 19b.  TELEPHONE NUMBER 

 



 
 
 

Identifying the Probability 
Distribution of Precipitation Annual 
Maxima for Probabilistic Flood 
Hazard Analysis 
 

Implications of Gumbel’s Extreme Value Theory 
 
 
 
 
 
 
 
 
 
August 2020 
 
 
 
 
 
 
 
 
 
 
 
US Army Corps of Engineers 
Institute for Water Resources 
Hydrologic Engineering Center 
609 Second Street 
Davis, CA 95616 
 
(530) 756-1104 
(530) 756-8250 FAX 
www.hec.usace.army.mil TP-163 

  

http://www.hec.usace.army.mil/


 
 
 
 
 
 
 
 
 
 
 
 
 
 
Papers in this series have resulted from technical activities of the Hydrologic 
Engineering Center (HEC).  Versions of some of these have been published in 
technical journals or in conference proceedings.  The purpose of this series is to 
make the information available for use in HEC's training program and for 
distribution with the U.S. Army Corps of Engineers (USACE). 
 
 
 
The findings in this report are not to be construed as an official Department of 
the Army position unless so designated by other authorized documents. 
 
 
 
The contents of this report are not to be used for advertising, publication, or 
promotional purposes.  Citation of trade names does not constitute an official 
endorsement or approval of the use of such commercial products. 

 
 
 



1 

Identifying the Probability Distribution of 
Precipitation Annual Maxima for Probabilistic 

Flood Hazard Analysis 
Implications of Gumbel’s Extreme Value Theory 

 
 
 
Introduction 
 
Identification of the best-fit probability distribution for precipitation annual maxima for a 
specified storm type is an important task in the development of a site-specific watershed 
precipitation-frequency (PF) relationship for use in stochastic flood modeling (Carney et al., 
2018; Nathan et al., 2003, 2016; Schaefer & Barker, 2005; SEFM, 1998; Smith et al., 2015).  
L-moments (Hosking, 1990) are typically used to identify the regional probability distribution 
for point precipitation for a specified storm type as part of a regional PF analysis (Hosking & 
Wallis, 1997; L-RAP, 2005; Schaefer et al., 2016). 
 
Stochastic flood modeling is a common method for performing a detailed Probabilistic Flood 
Hazard Analysis (PFHA) to assess hydrologic risk at federally-owned dams in the United States 
and at major water projects in Australia. The findings from the PFHA provide probabilistic 
hydrologic loadings as inputs to risk analysis for use in Risk-Informed Decision-Making 
(RIDM). An aspect of stochastic flood modeling that distinguishes this application from other 
flood-frequency analyses is the need to have precipitation and flood estimates for extreme 
Annual Exceedance Probabilities (AEPs) in the range of 10-3 to 10-7. The design of large 
hydraulic infrastructure typically employs the estimated limiting value (ELV) principle (Chow et 
al., 1988) which implies extremely small AEP events for capacity exceedance, e.g., dam 
overtopping. Flood estimates at these extreme AEPs are required because of the potential for 
loss-of-life and high economic damages resulting from a failure of a large dam. 
 
A key element of the stochastic approach is the development of the watershed PF relationship. 
The shape of the watershed PF relationship is dependent upon several factors including: storm 
type; point precipitation L-moment statistics; probability distribution for point precipitation; 
temporal storm characteristics for the specified storm type; and the spatial storm characteristics 
relative to the geometric shape of the watershed of interest (Alexander, 1963; Fontaine & Potter, 
1989; Foufoula-Georgiou, 1989; Schaefer et al., 2016; Schaefer 2017a, 2017b). Figure 1 depicts 
a watershed PF relationship and uncertainty bounds for the mid-latitude cyclone (MLC) storm 
type for the Cherokee Dam watershed in the Tennessee Valley, located in Eastern Tennessee, 
USA. This watershed PF relationship was developed using a stochastic storm generation 
procedure (Schaefer, 2017b) that included point precipitation findings (MGS Engineering et al., 
2015) obtained from regional PF analysis and the spatial correlation structure for the synoptic 
scale mid-latitude cyclone storm type. The Tennessee Valley study also displayed that 
uncertainty in the selected probability distribution for point precipitation, along with uncertainty 
in the regional L-skewness measure, are typically the primary contributors to the total 
uncertainty variance (Figure 2) for extreme AEPs in the range of 10-3 to 10-7. Thus, identification 
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of the regional probability distribution for point precipitation is a critical task in the development 
of a watershed PF relationship for stochastic flood modeling. 
 

 
Figure 1. Example of watershed precipitation-frequency (PF) relationship and 90% 

uncertainty bounds for the mid-latitude cyclone (MLC) storm type for the 
Cherokee Dam Watershed, Tennessee. 

 

 
Figure 2. Example of relative contribution of various sources of uncertainty 

to total uncertainty variance for watershed precipitation-frequency 
(PF) relationship for mid-latitude cyclone (MLC) storm type for 
Cherokee Dam Watershed, Tennessee. 
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The recent implementation of storm typing (MGS Engineering et al., 2015), for assembling 
precipitation annual maxima datasets for regional PF analysis, produces greater homogeneity 
regarding the physical and statistical behavior of specific storm types. In this context, storm 
types may be generally categorized in North America as: synoptic scale mid-latitude cyclone 
(MLC); synoptic scale tropical storm and tropical storm remnant (TSR), mesoscale storm with 
embedded convection (MEC); and local storm (LS). Our experience has been that use of the 
nominal 48 hour, 6 hour, and 2 hour durations have been representative of the period during 
which the majority of precipitation occurs for the synoptic-scale, mesoscale and local storm 
types in North America. 
 
Recent experiences with storm typing procedures within L-moment based regional PF analyses, 
for several large regions within the United States (MetStat et al., 2018a and b; MGS Engineering 
et al., 2014), have resulted in a new perspective on Gumbel’s original work on extreme value 
statistics (Gumbel, 1958). The intent of this paper is to reconcile recent observations of 
convergence behavior of block maxima of properly homogenized populations with the 
underlying theory of extreme value statistics. The agreement of theoretical and observed 
convergence of point precipitation extremes has major implications affecting regional PF 
analysis; further, this convergence behavior can assist in identification of a regional probability 
distribution for point precipitation annual maxima. 
 
This paper will discuss the development of the field of extreme value theory and its relevance to 
precipitation-frequency analyses, demonstrate how the behavior of extremes for 
meteorologically-homogeneous datasets across North America can be predicted using classical 
extreme value theory, utilize Monte Carlo simulation to investigate the convergence properties of 
homogeneous samples, and recommend a probability distribution useful for modelling 
incomplete convergence of extremes. 
 
Gumbel Convergence Theory and L-Moments 
 
Extreme value theory underpins the general framework for performing PF analyses. Extreme 
value theory is a field with a long and rich history, with its discovery generally credited to 
Fréchet (1927), Fisher and Tippett (1928), Gumbel (1935), and Gnedenko (1943). For studies of 
block maxima, generally the annual maximum from a parent population, the first extreme value 
theorem is of most importance. This theorem, named the Fisher-Tippett-Gnedenko theorem, 
states that properly normalized maxima of independent and identically distributed (iid) random 
variables converge in distribution to one of three asymptotic forms (see Equation (1), 
summarizing Gnedenko (1943)): 
 

𝑐𝑐𝑛𝑛−1(𝑀𝑀𝑛𝑛 − 𝑑𝑑𝑛𝑛)
𝑑𝑑
→ �

𝛬𝛬(𝑥𝑥)
𝛷𝛷(𝑥𝑥)
𝛹𝛹(𝑥𝑥)

 (1) 

where Λ, Φ and Ψ are the three asymptotic forms of extreme value distribution. 
 
For a sequence of iid random variables X1, X2, …, Xn with common distribution function F, and 
𝑀𝑀𝑛𝑛 = max{𝑋𝑋1, … ,𝑋𝑋𝑛𝑛}; of interest is the distribution of the maximum Mn. An exact distribution 
Pr(𝑀𝑀𝑛𝑛 ≤ 𝑧𝑧) arises from the joint probability of not exceeding the z magnitude of the extreme 
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event in each of the n random variables; Pr(𝑀𝑀𝑛𝑛 ≤ 𝑧𝑧) = Pr(𝑋𝑋1 ≤ 𝑧𝑧, … ,𝑋𝑋𝑛𝑛 ≤ 𝑧𝑧) and due to 
independence Pr(𝑀𝑀𝑛𝑛 ≤ 𝑧𝑧) = Pr(𝑋𝑋1 ≤ 𝑧𝑧) ∗ Pr(𝑋𝑋2 ≤ 𝑧𝑧) ∗ … ∗ Pr(𝑋𝑋𝑛𝑛 ≤ 𝑧𝑧) = �𝐹𝐹(𝑧𝑧)�𝑛𝑛. For scale 
parameter 𝑐𝑐𝑛𝑛 > 0 and location parameter 𝑑𝑑𝑛𝑛 ∈ ℝ, which normalize Mn, convergence in the 
distribution (e.g., Resnick, 2010) occurs. This convergence is analogous to the central limit 
theorem (CLT), except analyzing the maxima of a sample instead of the sample mean. In the 
CLT, usage the normalizing term 𝑑𝑑𝑛𝑛 is the population mean and 𝑐𝑐𝑛𝑛 the population standard 
deviation divided by the root of the sample size n. The asymptotic form is the standard normal 
distribution. 
 
Practically, F and the normalization constants cn and dn are rarely known or of concern, because 
analysis begins with block maxima, and the form and parameters of the asymptotic result are 
used directly. Furthermore, the maxima convergence to one of the three limiting forms is 
dependent on the underlying population F. Gumbel’s 1958 unifying monograph Statistics of 
Extremes detailed the asymptotic distributions to which various forms of F converge. These three 
distributional forms are the extreme value (EV) types I, II and III (Gnedenko’s Λ, Φ and Ψ, 
respectively). For the case of block maxima that have positive values of the data, EV type I 
(EV1) is a two-parameter distribution called by Gumbel the “double exponential distribution” 
and was later named in his honor; it has no lower or upper bound. EV type II (EV2) is a three-
parameter distribution, which has a lower bound and no upper bound and is referred to as the 
Fréchet distribution. EV type III (EV3) is a three-parameter distribution, which has an upper 
bound and is named for the Swedish mathematician Waloddi Weibull. 
 
Groupings of the mathematical forms of F whose block maxima converge to one of the three 
extreme value distributions is said to fall in that distribution’s maximum domain of attraction 
(MDA) (Embrechts et al., 1997). Broadly speaking, F belonging to the exponential family of 
distributions fall into the Gumbel MDA. F with heavy tails (called the “Cauchy” form by 
Gumbel, in some literature, e.g., Goldie & Resnick (1988), the sub-exponential family) fall into 
the Fréchet MDA. Finally, F with lighter than exponential tails, or a fixed upper bound (called 
the “limited” form by Gumbel), fall into the Weibull MDA. 
 
Block maxima are constructed from sequential samples of maxima taken from non-overlapping 
“blocks” of a parent process (for hydrologic applications, generally the maximum event per 
water year). Such treatment is usually in the interest of collecting an iid sample of severe events. 
For PF analyses, the underlying process from which the maxima are drawn creates zero or more 
events per block (year). The rate of convergence of the distribution of the maxima to one of the 
three asymptotic forms is based on both the properties of the process as well as the number of 
events per block from which the maxima are drawn. Incomplete convergence to the asymptotic 
form occurs for multiple reasons: principally, the generally slow rate of convergence for some 
forms of F and norming constants cn and dn, and the limited number of events that occur in each 
block from which the maxima might be drawn (Embrechts et al., 1997). The behavior of the 
convergence of the block maxima described above will be termed Gumbel Convergence Theory 
for convenience in this paper. 
 
In the field of hydrometeorology, the adoption of the Generalized Extreme Value (GEV) 
distribution, which subsumes the EV types I, II and III, is generally due to Jenkinson (1955, 
1969). Each subtype is represented with the GEV shape parameter κ with κ < 0 for EV2, κ > 0 
for EV3, and κ = 0 for EV1. The GEV distribution has myriad parameterizations, but the authors 
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choose to employ the Hosking location-scale-shape parameterization (Hosking et al., 1985) for 
its consistency in interpretation of the parameters of the GEV, Generalized Pareto, and 
Generalized Logistic distributions. The inverse cumulative distribution function (quantile 
function F-1(p)) for the GEV distribution has the mathematical form (see Equation (2)): 

𝐹𝐹−1(𝑝𝑝|𝜉𝜉,𝛼𝛼,𝜅𝜅) = 𝜉𝜉+ 𝛼𝛼
𝜅𝜅

{1− [−𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝)]𝜅𝜅}    𝜅𝜅 ≠ 0 

𝐹𝐹−1(𝑝𝑝|𝜉𝜉,𝛼𝛼) = 𝜉𝜉 − 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙[−𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝)]    𝜅𝜅 = 0 
(2) 

where: ξ, α , κ are location, scale, and shape parameters, respectively.  
 
L-moments provide a robust method for computing sample statistics, characterizing the shapes of 
probability distributions and for fitting of distribution parameters for selected probability 
distributions within the framework of a regional frequency analysis. L-moment descriptions of 
sample characteristics tend to be less sensitive to outliers than conventional product moments 
(Vogel & Fennessey, 1993). The L-moments L-location, L-CV, L-skewness, and L-kurtosis have 
similar application and utility as the moment-based counterparts of the mean, and coefficients of 
variance, skewness, and kurtosis, respectively. The L-moment Ratio Diagram (LMRD) provides 
a convenient graphic for displaying the relationship between L-skewness and L-kurtosis for 
probability distributions as well as sample data. On the LMRD, two-parameter distributions have 
fixed L-skewness and L-kurtosis and display as points, three-parameter distributions have  
L-kurtosis dependent on L-skewness and display as lines, and four or more parameter 
distributions are shown as regions. Figure 3 depicts the range of the LMRD and several 
probability distributions useful for PF analyses and are listed in the figure. 
 

 
Figure 3. L-Moment Ratio Diagram (LMRD) displaying L-skewness versus L-kurtosis 

relationships for selected three-parameter probability distributions.  
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The MDA for various combinations of population L-skewness and L-kurtosis are depicted on the 
LMRD in Figure 4. Populations with L-skewness-L-kurtosis pairings below the black line fall 
into the Weibull MDA; populations along the black line the Gumbel MDA; and populations 
above the black line the Fréchet MDA. The MDA for maxima from a probability distribution can 
change depending on parameter values for flexible distributions, which often have one or more 
parameters that affect the tail weight and support of the distribution. 
 

 
Figure 4. L-Moment Ratio Diagram (LMRD) displaying the maximum domain of 

attraction (MDA) for selected parent populations (red = Fréchet MDA, 
blue = Weibull MDA, black line = Gumbel MDA). 

 
Experience with Regional Precipitation Datasets using Storm Typing 
 
Findings from recent large-area regional PF studies (Table 1) for the Western Sierra Mountains 
California (Schaefer & Barker, 2005), and the states of Tennessee (MGS Engineering, 2014), 
Texas (MetStat 2018a), and Colorado – New Mexico (MetStat 2018b) indicated the regional 
probability distribution for point precipitation is near the GEV distribution for humid climates 
where a given storm type occurs many times each year. Indeed, this is a common situation for 
the MLC storm type in a humid climate as illustrated in Figure 5 where the LMRD plot displays 
the L-skewness and L-kurtosis pairings for 38 homogeneous sub-regions in the Tennessee Valley 
study area (MGS Engineering, 2014). Moreover, the sampling distributions for L-skewness and 
L-kurtosis are nearly normally distributed, and the scatter in the data (due to the large number of 
stations and samples in the region) asymptotically approach a bivariate Normal distribution 
(Hosking & Wallis 1997). The centroid of the sub-region data for the MLC example plots just 
below the GEV curve. 
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Table 1. Sample Sizes for Regional Annual Maxima Datasets for Various Storm Types. 

Study Area 
LMRD 
Figure 

Storm 
Type1 

Duration 
(hr) 

Homogeneous 
sub-regions 

Number of 
stations 

Station-years 
of record 

Tennessee Valley Figure 5 MLC 48 38 794 46,393 
Colorado – New Mexico Figure 6 LS 2 10 84 3,039 
Texas Figure 7 TSR 48 33 650 15,341 

1Refers to the figure in this paper. 
 

 
Figure 5. L-skewness - L-kurtosis pairings for homogeneous sub-regions in the Tennessee 

Valley study area for the mid-latitude cyclone (MLC) storm type. 
 
Conversely, in arid and sub-arid climates where a given storm type produces few storms in any 
given year, the identified probability distribution commonly plots on the LMRD further below 
the GEV curve. The LMRD plot presented in Figure 6 depicts the L-skewness and L-kurtosis 
pairings for 10 homogeneous sub-regions in the inter-mountain semi-arid western Colorado-New 
Mexico study (MetStat et al., 2018b) for the LS convective storm type. Further, the data cluster 
and centroid of the L-skewness and L-kurtosis pairings is clearly below the GEV curve. Thus, 
the spread in L-skewness values is associated with climatic conditions where arid areas have 
greater L-skewness relative to semi-arid and sub-humid environments. If the GEV distribution 
were selected for the LS storm type in the Colorado-New Mexico study area, it would result in 
quantile estimates being overestimated, particularly for extreme AEPs. 
 
Regional PF analysis for precipitation produced in coastal areas exclusively by tropical storms 
was not possible until 2014 (MGS Engineering 2014) when storm typing was first employed in a 
PFHA context for assembly of annual maxima precipitation datasets for the TSR storm type. 
TSR events do not occur every year at some coastal sites, and in some years the TSR 
precipitation is too small to be representative of the TSR phenomenon. Therefore, this situation 
requires using a mixed discrete-continuous distribution with a mixing parameter describing the 
fraction of years with little or no TSR precipitation (a probability mass at zero) and a probability 
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distribution describing TSR precipitation that exceeds a frequency-based threshold (continuous 
distribution) (MGS 2015). This TSR method was applied to events in the Texas study area 
(Table 1). 
 

 
Figure 6. L-skewness - L-kurtosis pairings for homogeneous sub-regions in the Western 

Colorado-New Mexico study area for the local storm (LS) storm type. 
 
Figure 7 depicts the L-skewness and L-kurtosis pairings for 33 homogeneous sub-regions in the 
coastal and central areas of Texas with data for those years when a TSR event was recorded at 
the individual stations (MetStat et al., 2018a). Distinctively, the data cluster and centroid of the 
L-skewness and L-kurtosis pairings is clearly seen to be well below the GEV curve and near the 
Generalized Pareto (GPA) distribution. The sub-region data are seen to parallel the GPA curve, 
where greater L-skewness values are associated with distance from the coast and drier climatic 
conditions further inland from the coast. The nearness of the sub-region data to the GPA curve is 
consistent with the situation where only one or a few TSR events occur in a year and the 
resultant probability distribution for the annual maxima has not moved far from the parent 
probability distribution. Collectively, Figure 5 (MLC), Figure 6 (LS), and Figure 7 (TSR) depict 
three distinct cases for the effect of the number of storm events per year and convergence toward 
the GEV distribution from below. 
 
Storm typing produces a distinct benefit in PF analyses, namely in strengthening the assumption 
of independent and identically-distributed populations (iid) from which block maxima are drawn. 
Homogenization of these iid populations allows for better characterization of the parent 
population and leads to stronger implications regarding the terminal convergence of block 
maxima sampling toward the GEV distribution. With storm-typed populations representing a 
homogenous sample of a meteorological process, the MDA to which the parent belongs might be 
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more readily identified, which affects estimates for parameter uncertainty for the distribution of 
maxima drawn from that population. 
 

 
Figure 7. L-skewness - L-kurtosis pairings for homogeneous sub-regions in the Texas 

study area for the tropical storm remnant (TSR) storm type. 
 
Simulations of Gumbel Convergence for Selected Parent Probability 
Distributions 
 
Monte Carlo simulations for a variety of probability distributions and distribution parameter 
combinations were used to examine Gumbel Convergence behavior regarding the number of 
events per year from which the annual maximum was obtained. The simulations were conducted 
with a sample size of 500 annual maxima for a given scenario of the parent distribution and 
distribution parameters, and 100 scenarios were conducted for each of a preselected number of 
events per sample year to reduce the effects of sampling variability. To show convergence to 
GEV the number of events simulated per sample year were 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30, 40, 
60, 80 and 100. 
 
Figure 8 shows that when the parent distribution resides above the GEV curve on the LMRD, the 
L-moment ratios for L-skewness and L-kurtosis and associated probability distribution converge 
to the GEV distribution from above and from left to right. There are three examples in Figure 8 
for cases where the three-parameter Generalized Logistic (GLO) distribution is the parent 
distribution, with varying L-skewness. In addition, a Wakeby-distributed parent is shown with a 
very large value of L-kurtosis that converges to GEV when the annual maximum is selected from 
just 5 events per year. All four of the parent distributions with high L-kurtosis demonstrate the 
same trajectory of convergence to GEV from above, and from left to right.  
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Figure 8. Progression of convergence from the three Generalized Logistic (GLO) 

distribution examples and the Wakeby distribution to the Generalized 
Extreme Value (GEV) distribution as a function of the number of events 
(1-100) from which annual maxima are selected. 

 
Conversely, when the parent distribution resides below the GEV curve, convergence to the GEV 
distribution occurs from below and from right to left. Figure 9 depicts examples for convergence 
from the GPA parent distribution with varying L-skewness to the GEV distribution. In both the 
GLO and GPA cases, the Monte Carlo results have heavy upper tails and the rate of convergence 
is relatively quick with fewer than 10 events per year needed to get near the GEV distribution. 
 
The last set of examples is for the Pearson type 3 (PE3) distribution (Figure 10) which converges 
to the Gumbel EV1 distribution because the Gamma distribution, of which the PE3 is a 
generalization, falls into the exponential family of probability distributions. For the case of L-
skewness = 0.01, which is nearly normally distributed, convergence to the Gumbel EV1 
distribution has not quite occurred even with the annual maxima chosen from 100 events per 
sample year. This outcome is due to the very light upper tail for L-skewness = 0.0100, as well as 
the relatively slow convergence of all samples in the Gumbel MDA (Resnick, 1986). 
 
Beyond the convergence behavior of sample L-skewness and L-kurtosis is that the lower order 
L-moments also vary with the number of storm events per year in progressing from the parent 
distribution to the GEV distribution. Figure 11 depicts the change in the L-location, L-CV, L-
skewness, and L-kurtosis for the case of the GPA distribution with a mean of 1.0, L-CV = 0.3, L-
skewness = 0.4 and L-kurtosis = 0.22. This systematic behavior in the population moments 
demonstrates the anticipated increase in central tendency and reduction in variation consistent 
with the impact of the sample size on the norming constants (see for example Embrechts et al., 
1997). 
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Figure 9. Progression of convergence from the three Generalized Pareto (GPA) distribution 

examples to the Generalized Extreme Value (GEV) distribution as a function of 
the number of events (1-100) from which annual maxima are selected. 

 

 
Figure 10. Progression of convergence from four Pearson type 3 distribution 

examples to the Gumbel extreme value type 1 (EV1) distribution as a 
function of the number of events (1-100) from which annual maxima are 
selected. 
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Figure 11. Variation of L-moments with number of storm events per year from which annual maximum 

is chosen for Generalized Pareto (GPA) parent distribution example. 
 
Examples of Parent Probability Distributions for Selected Storm 
Types and Locations 
 
Datasets for representative parent distributions for selected storm types and locations were 
assembled to assess the Gumbel convergence behavior specifically for meteorologically-
homogenous precipitation datasets. Peak-Over-Threshold (POT) datasets were assembled for 
long-term, high-quality hourly precipitation stations in the U.S. for storm types and durations 
where meteorologists have indicated that a given storm type signature is strong. Thresholds were 
selected based on meteorological judgment of the smallest value that is reasonably representative 
of the storm type of interest at a given location. Thresholds generally resulted in a rate of 
occurrence between about three and nine events per year, which was judged sufficiently frequent 
to be representative of a parent distribution in arid to humid climates, respectively. Table 2 lists 
the locations and durations for the various storm types and Figure 12 depicts the location of 
sample L-skewness and L-kurtosis pairings on the LMRD. In addition, Figure 7 shows L-
skewness and L-kurtosis pairings for homogeneous sub-regions for the TSR storm type. Due to 
the small number of TSR events per year, the pairings are near to the parent distribution, which 
is distinctly different from the GEV distribution. 
 
A review of Figure 7 (for TSR type) and Figure 12 (for other storm types) shows all L-skewness 
and L-kurtosis pairings for the four storm types to be plotting below the GEV curve and 
generally in the parameter space between the GEV and GPA distributions. Results for the 
individual stations are at-site samples subject to sampling variability. Nonetheless, these  
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L-skewness and L-kurtosis pairings are consistent with prior experience and conventional 
practice (Stedinger et al., 1993) that precipitation annual maxima datasets, for durations less than 
several days (individual storm events), are generally well described by the GEV distribution and 
precipitation POT datasets are generally well-described by the GPA distribution. The latter result 
is a natural example of the second extreme value theorem, also called the Pickands-Balkema-de 
Haan theorem (Balkema & de Haan 1974, Pickands 1975), which is concerned with the 
distribution of samples exceeding a selected threshold. Samples constructed by POT converge to 
the GPA much in the same way that block maxima converge to the GEV distribution, and this 
behavior plays a role in explaining the observed convergence towards the GEV distribution in 
meteorologically-homogenous regions of point precipitation samples. 
 
Table 2. Precipitation Stations Used for Assembling Peak-Over-Threshold Precipitation Datasets for 

Selected Storm Types. 
Stn ID Station Name State Storm 

Type 
Duration 

(hr) 
Threshold 

(mm) 
Events 

per year 
Years of 
record 

Sample 
L-skewness 

Sample 
L-kurtosis 

040897 Blue Canyon WSO CA MLC 48 68.6 7.0 60 0.357 0.231 

311690 Charlotte WSO AP NC MLC 48 27.9 8.0 64 0.337 0.207 

052220 Denver WBFO AP CO MLC 48 7.4 7.0 61 0.433 0.267 

404950 Knoxville WSO AP TN MLC 48 30.7 8.0 64 0.381 0.210 

356751 Portland WB AP OR MLC 48 25.1 9.0 62 0.336 0.214 

457781 Snoqualmie Pass WA MLC 48 66.0 9.0 57 0.318 0.186 

090451 Atlanta WSO AP GA MEC 6 19.3 8.0 65 0.374 0.205 

311690 Charlotte WSO AP NC MEC 6 17.5 8.0 65 0.348 0.194 

401656 Chattanooga WSO TN MEC 6 18.3 8.0 64 0.387 0.224 

111549 Chicago O’Hare WSO IL MEC 6 17.0 8.0 51 0.381 0.242 

118179 Springfield WSO AP IL MEC 6 16.0 8.0 65 0.379 0.226 

111549 Chicago O’Hare WSO IL LS 2 11.4 8.0 51 0.399 0.228 

052220 Denver WBFO AP CO LS 2 7.6 5.0 61 0.412 0.202 

266779 Reno WSFO AP NV LS 2 4.1 4.0 64 0.410 0.272 

118179 Springfield WSO AP IL LS 2 11.2 8.0 65 0.360 0.210 

048832 Tehachapi Rangr Stn CA LS 2 2.5 2.5 61 0.525 0.283 

 
Information about the parent distribution and the number of events per year for these 
homogeneous regions provide insight into the nearness of the resultant probability distribution to 
the GEV distribution for annual maxima. This information is particularly useful because of the 
importance of identification of the probability distribution (Figure 2) when computing quantile 
estimates of extreme AEPs. 
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Figure 12. L-skewness and L-kurtosis Pairings for precipitation peak-over-threshold 

datasets for various storm types observed at locations in the United States. 
 
Sampling Variability and Data Quality Issues 
 
The experience gained in conducting numerous regional analyses shows that it is not uncommon 
to find sub-regional pairings of L-skewness and L-kurtosis above the GEV curve. We have seen 
this occur for a variety of reasons. For example, in Figure 5 the sub-regional values above the 
GEV curve are the result of sampling variability, which would be anticipated with a population 
value shown at the centroid point on the LMRD near the GEV line. In addition, sub-regional 
solutions for L-skew and L-kurtosis can also be affected by extreme observations that are 
unrepresentative of the sample size used in their estimation. Our experience has been that final 
regional solutions residing above the GEV curve are often associated with incomplete quality 
checking of datasets that have false annual maxima for low values associated with incomplete 
records. Homogeneity of the sampling with regard to storm typing is also a critical piece. 
Moreover, surrogates for meteorological storm typing, such as filtering by seasonality and/or 
duration, may be inadequate for ensuring that the parent populations are sufficiently 
homogeneous. Therefore, studies that only employ these strategies, for example Karlovits et al., 
(2017) or Schaefer and Barker (2005), can result in annual maximum distributions slightly above 
the GEV curve. 
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Identification of Probability Distribution for Precipitation 
Annual Maxima 
 
As shown above, POT datasets with a low threshold are representative of a parent distribution in 
the context of applying Gumbel Convergence Theory for precipitation annual maxima. In 
addition, prior investigation (Stedinger et al., 1993) has shown the GPA distribution to be a 
reasonable choice for POT analyses of precipitation maxima for individual storm events with 
durations from several minutes to several days. These conditions indicate the parent probability 
distribution for precipitation maxima resides below the GEV curve on the LMRD. Application of 
Gumbel Convergence Theory therefore, yields convergence towards the GEV distribution from 
below the GEV curve. Finally, the large-area regional studies summarized in Table 1, and 
example stations listed in Table 2, demonstrate that extreme precipitation samples constructed 
from homogenous populations have parent populations on the GPA side of the GEV curve of the 
LMRD, not the GLO side. 
 

There are several important implications of this situation.  

1. The GEV curve on the LMRD creates an upper bound on distributional choices for 
precipitation annual maxima for durations associated with individual storm events. 

2. In climatic environments where there are a small number of storm events of a given 
storm type each year, it is reasonable to expect that the probability distribution for 
annual maxima for that storm type has not converged to the GEV distribution. 

3. If quantile estimates for extreme AEPs are of interest, then a probability distribution 
in the distributional space below the GEV curve on the LMRD that can replicate the 
observed annual maxima data should be selected to model the population. 

 
Large-area regional precipitation-frequency (PF) studies conducted using storm typing 
procedures should produce further observations of the convergence of homogeneous region PF 
distributions toward the GEV distribution. The collection of results from studies past and future 
potentially lead to the application of Bayesian techniques based on prior information available 
for estimation of L-moment ratios and the level of convergence to the GEV distribution. This 
approach can be used to produce reasonable results for screening level hydrologic risk analyses 
without requiring extensive detailed analyses for the PF component. 
 
Advantages of Four-Parameter Kappa Distribution for Precipitation 
Annual Maxima 
 
The four-parameter Kappa distribution (Hosking, 1994) is applicable over a large parameter 
space on the LMRD ranging from a second shape parameter (h) value of -1 to infinity (Figure 
13). This characteristic makes this distribution a logical choice for the regional probability 
distribution for point precipitation for developing a watershed PF relationship for use in 
stochastic flood modeling as part of a PFHA. 
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Equation (3) shows the quantile function (F-1(p)) for the four-parameter Kappa distribution: 

𝐹𝐹−1(𝑝𝑝|𝜉𝜉,𝛼𝛼,𝜅𝜅,ℎ) = 𝜉𝜉+
𝛼𝛼
𝜅𝜅 �1− �

1− 𝑝𝑝ℎ
ℎ �

𝑘𝑘

� (3) 

where: ξ, α, κ, and h are location, scale and two shape parameters, respectively; and p is 
the cumulative probability. The cases h = 0 and k = 0 are implicitly continuous limits.  
 

 
Figure 13. L-skewness and L-kurtosis parameter space applicable to four-parameter 

Kappa distribution. 
 
Several conventional three-parameter distributions are special cases of the Kappa distribution, 
distinguished by the value of the second shape parameter h. These include the GLO (h = -1), 
GEV (h = 0), Gaucho (h = +0.5, Nunez et al., 2011) and GPA (h = +1). In this context, these 
three-parameter distributions can be envisioned as a four-parameter Kappa distribution with a 
fixed value for the second shape parameter h. This feature makes the Kappa distribution 
attractive for describing precipitation annual maxima, and allows uncertainties in identification 
of the regional probability distribution to be simulated by varying h. The utility of the h 
parameter can also be viewed from the perspective of Gumbel Convergence Theory where the h 
parameter, as fitted by the method of L-moments, varies with the number of storms per year. 
Figure 14 provides the change in the h parameter with the number of storms per year for the 
GPA example parent distribution with L-skewness = 0.400 displayed in Figure 11. 
 
In practice, the centroids of the data clusters shown in Figure 5, Figure 6, and Figure 7 would be 
fitted by the four-parameter Kappa distribution where a fixed h value effectively results in a 
three-parameter distribution. 
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Figure 14. Variation of the second shape parameter h of the four-parameter Kappa 

distribution with the number of storm events per year from which the 
annual maximum is chosen for a Generalized Pareto (GPA) parent 
distribution example. 

 
Use of the Kappa Distribution is also consistent with the trajectory of sample convergence as 
seen in Figure 9 for the GPA distribution. Convergence occurs along “iso-kappa” lines, which 
are lines of equal value of the Kappa distribution’s first shape parameter (κ). This is a result 
consistent with the formulation of the Hosking location-scale-shape GLO, GEV, and GPA 
distributions (Hosking, 1994). These iso-kappa lines establish two points: identification of the 
GEV sub-distribution to which the parent distribution would eventually converge with enough 
events per year; and a regionally-based estimator for the annual maximum Kappa distribution’s 
first shape parameter κ based on the homogenous parent population. This result is also consistent 
with the observation in equality of the shape parameter of the GEV and GPA distributions for 
block maxima taken from a GPA population made by Hosking and Wallis (1987). Additionally, 
Hosking (1994) showed that the maximum of a binomially-distributed count of GPA samples has 
a Kappa distribution with h = 1/n, which is consistent with the simulation results shown in Figure 
14. Finally, the location and scale parameters of the Kappa distribution (ξ and α) are consistent 
with the GEV location and scale parameters derived from a parent GPA as shown by Madsen et 
al., (1997, review equations 10 and 11). 
 
Figure 15 displays the iso-kappa trajectory of convergence of a parent GPA with κ = 0.077 
which converges to an EV3 distribution, and the trajectory for the GPA example in Figure 9 with 
κ = -0.143 which converges to an EV2 distribution. Furthermore, the sample maximum 
simulated L-moments for 1 to 100 events per year (yellow circles) are shown in Figure 15 for 
comparison with the κ = -0.143 iso-kappa line.  
 



18 

 
Figure 15. Example iso-kappa lines of convergence for two Generalized Pareto 

(GPA) parents, with the sample maximum simulated L-moments for 
number of events per year (1-100). 

 
Addressing Uncertainties in Identification of Probability Distribution 
for Precipitation Annual Maxima 
 
As shown in Figure 2, epistemic uncertainty in the identification of the regional probability 
distribution is one of the greatest contributors to the total uncertainty and uncertainty bounds for 
point and watershed PF. A practical approach to modeling the uncertainty in identification of the 
regional probability distribution is to take advantage of the flexibility of the four-parameter 
Kappa distribution. L-moment ratio, L-skewness, and L-kurtosis pairings for homogeneous sub-
regions can be used to identify the best-fit h parameter. One practical approach is to adopt h to 
the nearest 0.05 increment. For this reason, the specific four-parameter Kappa distribution with a 
fixed second shape parameter h can now be treated as a three-parameter distribution with a fixed 
relationship between L-skewness and L-kurtosis. This approach can be visualized as a unique 
curve on the LMRD for the best-fit h parameter that generally parallels the GEV curve (Figure 
4). Consequently, modeling of epistemic uncertainty in regional L-skewness and L-kurtosis 
yields a bivariate Normal distribution (like Figure 5) centered about the L-moment ratio curve 
for the best-fit h parameter consistent with the sampling variability observed in the original 
dataset. 
 
The use of a variable h parameter to represent a form of model structure uncertainty offers 
flexibility in describing the behavior of a finite sample and its incomplete convergence to the 
theoretical distribution of its extremes. However, this flexibility exposes the potential for overfit 
if not credibly estimated. The regional approach to estimating h avoids fitting to small samples 
where overfit occurs most often, and a limit on the parameter uncertainty is rooted in the theory 
of extremes.  
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While other discussions of the limiting law of precipitation extremes, such as Papalexiou and 
Koutsoyiannis (2013), focus on which of the three GEV subtypes best describes the annual 
maximum of daily-duration rainfall, the results here show that the GEV subtype is best used as a 
limiting condition based on the characteristics of the parent population. In addition, incomplete 
convergence to the extreme value distribution is to be represented using the second Kappa shape 
parameter h. Gumbel Convergence Theory establishes the GEV distribution as the limiting 
relationship on the LMRD and therefore, sampling for epistemic uncertainty is restricted to the 
parameter space below the GEV curve on the LMRD for parent populations in that region. 
 
Conversely, an alternative parameter uncertainty estimation scheme invokes the parametric 
bootstrap, and this scheme is employed as a method for examining the impact of parameter 
uncertainty on rare quantile inference (Karlovits et al., 2017). When using this procedure, it 
would be prudent to reject candidate Kappa distribution re-fits which produce an h parameter 
value that lies above the GEV (h = 0) line on the LMRD for parent distributions below the line. 
Utilizing this scheme may affect the estimate of exceedance probability for design depths of 
precipitation by potentially altering the shape of the confidence limits at remote frequencies. 
 
These findings have the greatest effect on projects in arid, semi-arid, and sub-humid climates 
where fewer storms per year will result in the regional probability distribution being further 
below the GEV distribution on the LMRD. This situation will result in more benign quantile 
estimates for extreme AEPs than would be produced by the adoption of the GEV distribution, the 
effect of which can be seen in Figure 16. In addition, restriction of distribution choices to below 
the GEV on the LMRD in the uncertainty analysis will result in smaller quantile estimates for the 
mean-frequency curve and upper 90% uncertainty bound. Both situations combine to reduce 
unrealistically large quantile estimates for extreme events that are important considerations in 
hydrologic risk analysis and RIDM. 
 

 
Figure 16. Moderation of extreme quantile Annual Exceedance Probability (AEP) estimates 

when adopting the Kappa distribution over the Generalized Extreme Value (GEV). 
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Summary and Conclusions 
 
The recent implementation of storm typing in assembling precipitation annual maxima datasets 
for regional PF analysis has led to examination of Gumbel’s extreme value theory in light of L-
moments technology. Observations for large-area regional precipitation-frequency analyses show 
that extreme precipitation data that are meteorologically-homogenous have properties predicted 
by classical extreme value theory. Maxima of these homogenous populations demonstrate 
convergence to the GEV distribution from below the GEV curve on the LMRD for durations 
representing individual storm events. These maxima are most often drawn from GPA or near-
GPA parent distributions. These two results are predicted by the first and second extreme value 
theorems, respectively. 
 
Annual maxima from these homogenous populations tend to show incomplete convergence to 
the GEV distribution due to the limited frequency of these storm events occurring per year. 
Moreover, Monte Carlo simulations demonstrated the rate and trajectory of convergence of 
various populations as well as the asymptotic limit at the GEV distribution, which for many 
parent populations, occurs at a very large number of events per year. The four-parameter Kappa 
distribution allows for regionally-based modeling of precipitation extremes that exhibit varying 
levels of convergence to the asymptotic result suggested by classical extreme value theory. 
 
As risk-informed decision-making matures and uncertainty is better incorporated into the 
decision-making process for water infrastructure risk assessments, the quantification of 
uncertainties in the hazard modeling process become more important. The convergence theory, 
outlined above, offers guidance to hazard modelers regarding the selection of the regional 
distribution for precipitation-frequency studies as well as the expression of parameter 
uncertainty, which when estimated consistently across studies, contributes to the risk-informed 
decision-making process in a meaningful way. 
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