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COMPUTER DETERMINATION OF FLOW THROUGH BRIDGES
SUMMARY
Techniques used for the computer determination of water surface profiles
through bridges are presented. Application of momentum principles to

determine low flow profiles and methods for determining the controlling
type(s) of flow (low flow, pressure flow, weir flow, etc) are described.



COMPUTER DETERMINATION OF FLOW THROUGH BRIDGES

ABSTRACT

KEY WORDS: backwater; bridge piers; hydraulics; computers, models

Techniques used for the computer determination of water surface profiles
through bridge structures of various shapes and sizes, including culverts
under high fills, are presented. The techniques are incorporated in the
Hydrologic Engineering Center Program on Water Surface Profiles. Theo-
retical aspects of procedures for low flow through bridges using momentum
principles are described in detail for both supercritical and subcritical
flow. Methods for determining the controlling type of flow (low flow,
pressure flow, weir flow, or various combinations of these) and corre-
sponding changes in water surface elevation are described and illustrated.
Stress is placed on the need for additional research and field data to
evaluate the accuracy of various techniques that are suited to computer
determination of water surface profiles through bridges. Limitations of

the procedures are described.



COMPUTER DETERMINATION OF FLOW THROUGH BRIDGESl

By Bill S. Eichert,2 M. ASCE, and John Peters,3 AM. ASCE

INTRODUCTION

Many thousands of miles of water surface profiles are computed each
year by engineers throughout the world in order to evaluate flood damage
potential and to design channels that will reduce future flooding. Many
of these studies require the determination of profiles through various
types and shapes of bridges. Because of the repetitious nature of these
studies and the large amount of engineering labor required, it is desir-
able that digital computer programs for determining water surface profiles
include comprehensive bridge routines that will handle the variety of
bridge flow conditions that can be encountered in a typical study. A
brief comparison of bridge loss routines from several sophisticatéd
computer programs is contained in reference 1. This paper describes
comprehensive bridge flow routines that are incorporated in The Hydrologic
Engineering Center Program on Water Surface Profiles (reference 2), which
is now in use in many offices in the United States. Theoretical aspects
of procedures uséd in The Hydrologic Engineering Center's (HEC) computer
program for low flow through bridges (where the water surface is not in
contact with the low chord of the bridge) are presented. Theory of weir

1Published in the Journal of the Hydraulics Division, ASCE, vol. 96, no. HY7,
July 1970, pp. 1455-1468.

2Assistant Director, The Hydrologic Engineering Center, U.S. Army Corps of
Engineers; Davis, California.
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flow and orifice {pressure) flow are omitted because these are found in
many standard texts. The methods used tc determine the controlling type
of flow or combination of flows are also described and illustrated.
Shortconings of the bridge routines are emphasized in the hope that
further development of practical methods for predicting flow through
bridges will be stimulated.
METHODS AVAILABLE

Several procedures are available for computing energy losses through
bridges including the criteria set forth by the US Army Engineer Waterways
Experiment Station (reference 3), the Bureau of Public Roads {reference 4),
and the US Geological Survey (reference 5). All of these procedures are
applicable primarily to conditions of low flow control. When the free
surface of the water is obstructed by the bridge, pressure flow or a
combination of pressure flow and weir flow can exist. Little information
is available for computing losses under these conditions, although proce-
dures for pressure flow and weir flow through flood control conduits and
spillways are well established. Unfortunately, the various methods
available do not give comparable ansvers for a fixed set of conditiomns.
Technical procedures are not available for accurately determining flow
conditions that would cause a bridge to fail. Current procedures do not
take into account the local scour that occurs at high flows, although
this factor should be evaluated when possible. Provision for debris and
trash obstructions in the bridge opening are often ignored in the compu-
tations, althicugh these can produce subsitantial incresses in the upstrean

water surface elevation.



LOW FLOW THROUGH BRIDGES

As previously stated, low flow through bridges refers to flow
conditions that exist when water is not in contact with the low chord
of the bridge. In the HEC computer program approach the losses due to
expansion and contraction of the flow aresa on the upstream and down-
stream sides of the structure are compuited separately from the loss
through the structure itself. The contraction and expansion losses at
the bridge are evaluated in the same way as expansion and contraction
losses where bridges are not present; that is; by multiplying a loss
coefficient times the absolute difference between the velocity heads
within and outside of the bridge consiriction. For bridges without
piers, skin friction along the sides of the bridge are accounted for
with normal backwater computations using standard step procedures
(reference 6), When piers are present, the pier losses can be evaluated
by application of momentum principles as proposed by Koch and Carstanjen
(reference 7). Application of momentum principles for rectangular-
shaped channels is given in reference 3. The general theory, applicable
to channels of any shape, is given below. The HEC program is presently
programmed for trapezoidal-shaped constrictions in natural channels.

Congider the plan and profile views of flow past bridge piers shown
in Figure 1. Section 1 and Section A are located immediately upstream
and downstream from the upstream ends of the piers, respectively. It

is assumed that the pressure distribution in these sections is hydrostatic.



Momentum theory applied between the two sections results in

BV ¥ YALTL - 8@V, - ALY, = F (1)
where:

Q = discharge - fts/sec

o = fluid density - 1b seca/ﬁ;h

VysV, = mean velocities at Sections 1 and A, respectively - ft/sec

Bl’sA = momentum coefficlents - dimensionless

Al’AA = flow areas at Sections 1 and A, respectively - ft2

Y = unit weight of fluid - lb/ft3

§i,iA = vertical distances from water surface to centrcids of
Sections 1 and A, respectively - It

F force exerted by piers oan flow - 1b

LI}

Division of Equation (1) by v and substitution of Q# for v results in
2 2 .
Q. 7 -8 Ay =E
gh, TRV g AT . (2)

1 A
It is assumed in the above equation and subsequent equations that the
momentum coefficients due to a non-uniform distribution of velocity are
equal to 1. It is also assumed that boundary friction forces are
negligible compared with the force exerted on the flow by the pilers.

Koch and Carstanjen proposed that the static and dynamic forces exerted

by the upstream ends of square plers be given as

Q2
“p e
Yﬁ?ly?l and Yﬁ:ﬁ gx; s respecilvely

L



where:

A_. = projected area of the piers (or obstruction, if trash is in-

Pl
cluded) normal to the direction of flow corresponding to the
flow depth ¥y at Section 1.
§§l = vertical distance from water surface to centroid of Apy -

Koch and Carstanjen suggested that the dynamic force be reduced by one-
third for piers with semi-circular ends. In general terms the dynamic

force can be expressed as

2
D om 2
2 Al gAl

where CD is a drag coefficient equal to 2 for square pier ends and 1.33
for piers with semicircular ends. Substituting the above expressions
for static and dynamic forces in equation (2) and solving for the

momentum flux (i.e., sum of gx + Ay ) at Section A,

2 2

My ek, Ap¥p = Ag¥y = App¥p ¥ §A7]2_' Ay

DA
z Pl )

In a similar fashion, momentum theory may be applied between Sections
B and 3, which are located immediately upstream and downstream from
the downstream end of the piers, respectively. In this case, the force
exerted by the piers is in the downstream direction and has only a
static component, which is equal to YAP3§§3’ where
APS = projected area of piers normal to the direction of flow
corresponsing to the flow depth y3 at Section 3.

§§3 = vertical distance from water surface to ceantroid of APSG



The momentum flux at Section B can therefore be given as:

2 2
M = tﬁ,:“ﬂf%%‘%ﬁa*ﬁ; %)

Assuming that any force exerted by bridge piers is negligible between
Sections A and B, the momentum flux will be constant at these and all
intermediate sections. That is

My = My = M3 (5)

where M, = momentum flux at any intermediate section between Sections A
2

and B; = -g—g‘; + A2§2
Equations (3), (k) and (5) can be combined to give the following relation:
= -, & % €,z
g LR G2 T e M- ST Bl we
 AF e
833 ~ 233 * g 6)
Equation (6) contains three expressions for the momentum flux in the
constriction. The expressions are illustrated by the three curves in

Figures 2a, b and ¢, which relate the momentum flux in the constriction

to depths upstream from, within, and downstream from the constriction,
respectively. These curves are functions solely of the discharge and the
geometry of the cross sections and piers.

Six low-flow conditions can occur in the constriction, as illustrated
in Figure 3. In Figures 3a, b and c, the constriction is in a reach where

fiow would bve sub=-¢ritical if the presence of the bridge piers were ignored.



A water surface profile can be calculated using the HEC program for such

& reach from & downstream control to the downstream end of the bridge.
However, the depth thus calculated for Section 3 cen only exist if the
momentum flux in the constriction calculated on the basis of the downstream
depth exceeds the critical momentum flux in the constriction. Figure 2¢
can be used to determine the momentum flux that would exist in the
constriction for a depth at Section 3 from water swrface profile computa~
tions. The critical (minimum) momentum flux for the constriction is

represented by M in Figure 2b. If the momentum flux in the constriction

CRIT
calculated on the basis of the downstream depith axceeds the critical
momentum flux, flow as in Figure 3a will occur. If the two momentum
fluxes are equal, flow as in Figure 3b will oceur. If the critical
momentum flux is the greater of the two fluxes, & hydraunlic Jump will
be formed as shown in Figure 3¢, For flow as in FPigures 3b and ¢, the
momentum flux that exists in the constriction is the eritical momentum
flux, and unknown upstreamn and downstresm depths can be determined Ifrom
Figures 2a and 2¢, respectively, using the critical momentum flux, MGRIT‘
For flow as in Figure 3a, the momentum flux that exists in the constriction
can be determined from Figure 2¢ on the basis of & previously calculated
depth at Section 3. The unknown depths upstresm from and within the
constriction can be determined for this momentum flux from Figures 2a and
b, respectively.

Similar reasoning can be applied to ascertain the flow conditions

shown in Figures 3d, e and f for & reach where Tlow would be super-critical

7



if the presence of the bridge plers were ignored. However, for a super-
critical reach the "starting point" is a previously determined depth at
Section 1 rather than Section 3. If the momentum flux in the constriction

determined from Figure 2a on the basis of the depth at Section 1 is greater

than MCR

are equal, flow as in Figure 3e will occur. If MﬁRIT is the greater of

I7° flow as in Figure 3d will occur. If the two momentum fluxes

the two momentum fluxes, a hydraulic Jjump will occur upstream from the
bridge piers as shown in Figure 3f.

Subroutine BLFLO in HEC programs 22-J2-L212 and 22-J2-1232 determines
low-flow profiles using the above procedures (see flow chart, Figure &)
according to the following steps:

(1) The momentum flux for the constriction is determined on the
basis of a previously calculated upstream or downstream depth (Equations
on Figures 2a and 2c¢); \

(2) The critical momentum flux (minimum possible), Mprps 18

determined for the constriction;

(3) The type of flow {i.e., one of the types shown in Figure 3) is
determined by comparing the momentum fluxes determined in steps (1) and (2);

(4) Unknown flow depths are determined for the particular flow type
by using the appropriate portions of equation (6), with the exception that
if the flow type is that shown in Figure 3a, Yarnell's equation, which is
given below, is used.

Data collected and analyzed by the Los Angeles District, Corps of

Engineers (reference &) indicate that application of the semi-empirical



Yarnell equation yields more satisfactory results for the type of flow
shown in Figure 3a. The Yarnell equation is
L2 [
10 '3
2K (K + =—=2- - 0.6) | —=
' 2 A ‘ A 2
&3 | %3 \ %3/ J €

[}

Ay

where
Ay = ¥y, - y3 = difference between upstream and downstream water
surface elevations
K = experimental pier-shape coefficient

Values for K are given in Table 1.



TABLE 1

K FOR USE IN
TYPE OF PIER : YARNELL'S EQUATION

Semicircular nose and tail 0.90
Twin cylinder piers with

connecting diaphragm 0.95
Twin cylinder piers

without diaphragm 1,05
90° triangular nose and tail . 1.05
Square nose and tail 1.25

9a



PRESSURE FLOW
The method used in the computer program to determine the existence
of pressure flow is to compare the energy grade line elevations required
to pass a given discharge based on low-flow control and pressure-flow
control. The higher energy elevation represents the controlling type
of flow, as shown on Figure 5. The delineation between pressure flow
and the combination of pressure and weir flow is determined by comparing
the energy grade line elevation for pressure flow alone to the elevation
of the top of roadway. If this pressure flow energy grade line is above
the top of the roadway elevation, then a combination of pressure flow

and weir flow is assumed. The basic formula for pressure flow is:

Q= A\/éﬁ_g (8)

where:

Q = The discharge for pressure flow

L}

A = The cross sectional area of the submerged opening

H = The head under the bridge, normally measured from the upstream

energy grade line to the downstream tailwater
k = The total loss coefficient, including the velocity head
conversion from static energy to kinetic energy, friction loss,

and other minor losses

10



WEIR FLOW

Flow over the top of roadway is computed by subdividing the roadway
cross section into segments and computing the flow over each by the weir
formula. Corrections for submergence caused by flow over the weir and
through the bridge are presently besed on relations developed for ogee
overflow crests (reference 3) and sre shown in Table 2., It is planned
to incorporate submergence relations determined recentl& by W. A, Thomas
for broad-crested weirs (reference 8)., The basic weir flow equation

used in the program is

Q = o1 132

where:
Q = The discharge for weir flow
L = The effective length of flow
H. = The head over the roadway which is measured to the upstream
energy grede line
C = Coefficient of discharge

The various values of C required to reconstruct profiles through bridges
are much lower than the theoretical coefficient (3.1 for English system,
and 1.72 for metric system) for critical depth in a rectangular channel

~ since the weir is broad-crested. A typical value for C is 2.5.

ik



TABLE 2

RATIO OF TAILWATER VELOCITY
PERCENT REDUCTION HEAD (h.) TO DIFFERENCE IN
OF WEIR FLOW COEFFICIENT ELEVATION BETWEEN UPSTREAM
ENERGY GRADE LINE AND WEIR
CREST (He)
100 o}
60 .052
Lo .086
10 .23
6 .34
3 495
1 «705
0 .850

lla



COMBINATION FLOWS

A combination flow (pressure and weir, or low flow and weir) may
be determined by an iterative process of assuming energy grade line
elevations and computing corresponding discharges through the bridge
(pressure or low flow) and overbanks (weir flow) until the total
discharge corresponds to the given discharge. The determination of the
existence of the various types of flows is illustrated,in Figures 6 and
7. The combination of low-flow under the bridge and weir flow in the
overbanks (condition c) exists when the energy grade line elevation
required to pass the discharge under consideration is above the minimum
roadway elevation and below the low chord of the bridge. Figure 8 is a
flow diasgram which depicts the methodology of computing the flow profile
for the combination flows using the HEC computer program.

BACKWATER WITH CORRECTION FOR BRIDGE DECK

A simple method of compubting water-surface profiles through bridges
(called the normal bridge method) involves performing normal backwater
computations, making appropriate corrections for the area and wetied
perimeter of the bridge deck. This procedure for non-trapezoidal sections
where low-flow controls is superior to the method discussed in previous
paragraphs since a trapezoidal channel was assumed. When the discharge
is supercritical and the outlet is submerged, the normal method is not
applicable, and the method described in the preceding paragraphs should
be used, since critical depth should not be crossed in normal bsckwater
computations. However, if the downstream tailwater is also over the road-

way, then critical depth is not crossed and the normal bridge method is



The losses computed by the normal bridge routine from cross sections
on either end of the bridge do not reflect the shock losses experienceq
at the entrance and exit of the bridge. These losses may be taken into
consideration by using a full river and a constricted cross section
immedistely upstream and downstream from the bridge and performing normal
backwater computations through these cross sections.

LIMITATIONS OF THE HEC BRIDGE ROUTINE

Little experimental data is available for determining the dynamic
force for piers of various shapes in equation 3. While the procedure for
determining pier losses for low-flow control has been verified to a certain
extent by Koch and Carstanjen (reference 7) and the Los Angeles District
Corps of Engineers (reference 9), additional testing is warranted.

The coefficient of freeflow discharge used in the weir equation must
be determined largely by judgment. The correction for submergence is
based on experimental data for ogee spillways and becomes unreliable for
high values of submergence.

Some accuracy is probably lost by the assunption that the water
surface profile perpendicular to the direction of flow is horizontal.
Since the velocity of flow increases from the overbanks to the center of
the channel, the water surface elevation drops towards the center of the
channel. This condition can cause weir flow in the overbanks and low

flow in the channel for a level top of bridge.



CONCLUSIONS

This paper has presented & procedure for determining water surface
profiles through bridge structures of various shapes and sizes, including
culverts under high fills. The procedure allows & continuous water sur-
face profile to be computed through bridge structures, over dams, and
through culverts for both subcritical and supercritical flows. The
procedure is a practical technique that has been developed during the
last three years while working with over 60 different offices (approxi-
mately 30 Corps of Engineers offices) throughout the United States and
Canada.

While reasonable answers have been produced for many unusual types
and shapes of bridges, few occasions have arisen where accurate high-
water marks and measured discharges were available to test the accuracy
of the procedures.

It is hoped that this paper will stimulate an interest in this
subject leading to research projects which will provide the necessary
field data to evaluate techniques that are suited to computer solution
of water surface profiles through bridges.
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APPENDIX II, - NOTATION

The following symbols are used in this paper:

. aQ >

2 2 PR F e N

£
H

v < ™Y <o

ccross sectional flow area;

discharge coefficient for weir flow equation;
drag coefficient;

force exerted by bridge piers on fluid;
acceleration duve to gravity;

head in orifice and weir flow equations;

total loss coefficient for orifice flow equation;
pier-shape coefficient in Yarnell equation;
effective flow length in weir flow equation;
momentum flux;

momentum flux for flow at critical depth;
discharge;

mean flow velocity;

vertical distance from water surface to centroid of flow
momentum cocefficient;

specific weight of water;

density of water.

area;
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