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DIGITAL SIMULATION OF AN EXISTING WATER RESOURCES SYSTEM(l)

By
(2)

Augustine J. Fredrich
INTRODUCTION

Although present concern for environmental and sociological effects
of water resources projects might lead one to believe that the days of
extensive development of water resource systems have passed, the need for
techniques to analyze and evaluate the performance of existing systems
can be expected to continue for quite some time. In fact, the increased
awareness of the populace and the policymakers is resulting in a greatly
increased need for studies to: review and update operational plans for
existing systems; establish base conditions for comprehensive land and
water resource planning in basins where there are existing developments;
and define the economic, social, environmental, legal, and functional
effects of changes in criteria or priority of service among water uses.

The rapidity with which changes occur in modern society and the
diversity of interests among the various segments of society have stimu-
lated the operating entities to expand the scope of operation objectives
and consider a wider range of point-of-view in making operation decisions.

Consequently, the studies upon which the operation decisions are based

(l)For presentation at the IEEE Joint National Conference on Major Systems.
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must be more comprehensive in order to identify the degree of interaction
among water uses, provide information on competitive and complementary
aspects of the interactions and direct attention toward problems which
have not been fully considered in past studies.

During the past few years many techniques for developing optimal
operating plans have been described in the technical literature, but
it seems doubtful that any of the techniques would be completely satis-
factory for use in evaluating system operation plans for a large, complex,
existing system. In addition to the problems caused by the necessity for
simplification, linearizations and generalizations to make the existing
system mathematically tractable, there are gross inequities in the
reckoning of the worth of the output for some of the authorized and
approved water uses. These inequities result from political, legal,
institutional and social considerations, and their effect in an optimi-
zation process would likely be the production of a politically or
ingtitutionally infeasible operation plan. In order to avoid the problems
inherent in attempting to quantify and handle explicitly some of these
constraints, it appears that digital simulation can be used to analyze
and evaluate the operation of the system, with the idea that a satisfactory
operation plan might be developed through successive incremental improve-
ments in operation policy.

By postulating an operation plan, operating the simulation model to
determine the results of the proposed plan, evaluating the results in
terms of the desired operation objectives, making modifications to the

proposed operation plan to rectify any errors or inconsistencies in the



policy as indicated by the results of the simulation study, and repeating
the process until the desired objectives are realized, an operation plan
can be developed to satisfy any feasible operation objectives. The
probability that an optimal or near-optimal plan can be developed through
successive incrementally improved simulations is dependent on three
factors: the ability of the engineer or engineers conducting the study
to perceive and formulate operation objectives that accurately reflect
all of the requirements and services that must be satisfied by the
system; the ability of the engineer or engineers conducting the study

to evaluate the results of the simulation studies and formulate improved
operation rules that would produce the desired results; and the degree

of fidelity with which the simulation model being used reproduces physical
occurrences in the prototype system. This paper describes some of the
efforts expended thus far with respect to perception and formulation of

operation objectives and evaluation of study results.
THE ARKANSAS-WHITE-RED RIVERS SYSTEM

The existing reservoir system in the Arkansas River, White River
and Red River basins illustrates very well many of the complexities that
are encountered in studying the operation of an existing system. As
shown on plate 1, the system is composed of 23 reservoir projects located
in the three river basins. Although the river basins are hydraulically
independent, they are electrically interconnected so that system power
demands could theoretically be met by any one of the 19 power projects in

the three basins. In addition to generation of hydroelectric power,



the projects provide flood control, water supply and navigation and have
operation requirements to modify and enhance fish and wildlife environ—
ment, water quality, and water—based recreation. Not all purposes are
served by each project, but almost all projects are operated to provide
direct service to at least two water uses.

There are no physical facilities for diversion of water between
basins, so all demands for water must be met by projects within the
basin where the demand occurs. Legal and institutional constraints limit
the services which can be provided from some of the reservoirs so that
it is not always possible for all projects which have the physical capa-
bility to meet a given demand to do so.

The reservoir projects range in size from 4,350,000 acre-feet of
usable multiple-purpose storage to 19,000 acre-feet of power pondage.
The total installed capacity of the 19 hydroelectric projects in the
system is almost 2 million kilowatts. Water supply, fish and wildlife,
water quality, and water-based recreation are at present less important
than flood control, navigation, and power production. However, the
pressures for additional attention to recreation and water quality are
increasing and many operation decisions are already based, either
explicitly or implicitly, on requirements for these two purposes.

Three independent entities own and operate the projects, and a
fourth agency is directly involved in operation decisions because of
power marketing considerations. The Federal government (Corps of
Engineers) owns and operates 20 of the 23 projects, and a separate

Federal agency arranges for marketing of the power output of the 16



Federal power projects. A state agency owns and operates two of the
23 projects, both of which have power installations, and the remaining
project which also has a power installation is owned by a private utility.
The multiple ownerships create problems in analyzing the operation
for any purpose, but the problems involved in the analysis of hydropower
operation are vividly illustrative of the complexity which results from
the addition of institutional and legal constraints to the physical and
hydrologic constraints that exist naturally in the system. The power
projects are interconnected and their outputs marketed in a way which,
for purposes of an operation study, creates three power subsystems which
must be analyzed separately, but simultaneously. As shown on plate 2,
the Bull Shoals and Table Rock projects are electrically interconnected.
The output from these two power projects is marketed by the Federal
marketing agency to an area which has a seasonally varying demand with
a substantial peak demand during the winter. The non-Federal projects
(Ozark Beach, Markham Ferry and Pensacola) are operated by their owners,
and their output is not marketed by the Federal marketing agency. Conse-
quently, they form a system with water outputs that contribute to the
Federal projects, but with power outputs that do not contribute to the
Federal power supply. The remaining 14 power projects are electrically
interconnected, and they comprise a third system. The output from these
projects is marketed in an area with a seasonally varying demand with a
substantial peak demand in the summer. Furthermore, a portion of the
output of the Denison project is marketed to utilities in Texas which are

not connected to the utilities in the major marketing area. Therefore,
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this output must be deducted from the total power output of Denison before
calculating Denison’s contribution to the main system.

The bulk of the power demand in the market area is met by thermal
generation which is not Federally owned or operated, and the hydroelectric
generation is used primarily to meet peaking demands. More than 400,000
kilowatts of the 1,112,000 kilowatts of installed capacity in the l4-plant
Federal system is located at navigation lock and dam projects on the
Arkansas River. The storage at these projects is only adequate to
sustain peaking generation for daily or, at most, weekly cycles. Since
the storage volume upstream of these essentially "run-of-river” projects
is not large with respect to the water required to provide energy to
support this amount of installed capacity, and since there are no physical
facilities for diversion of water from the large storage projects in
the White and Red River basins, the power generation allocations among
the basins must be carefully planned to fully utilize the available
streamflow and meet the system power demands. The development of operation
criteria to accomplish this allocation effectively is a major part of
the problem of operating the hydroelectric system.

In arranging to market the hydroelectric power it is necessary to
provide for the capability to purchase thermal energy to support the
hydroelectric capacity during periods of deficient streamflow. Since the
thermal purchases represent a cost which must be deducted from the revenues
obtained from the sale of hydroelectric energy, it is not sufficient simply
to maximize the hydroelectric energy production. Instead, the hydroelectric

generation must be integrated with the thermal purchases in a way which



minimizes the thermal purchases without endangering the capability of

the hydroelectric plants.

USE OF SIMULATION IN THE A-W-R SYSTEM STUDY

Simulation may be described as the process of duplicating the
essence of a system or activity with respect to some predetermined
objective without actually attaining reality itself. This description
implies that it is not necessary to duplicate all facets of a system
in a simulation study, but rather that the study should only duplicate
those facets which are essential to understanding the system's behavior
with respect to the study objectives. Thus, in a study of system
operation it is unlikely that detailed modeling of structural aspects
of the components would be necessary, just as it is unlikely that
detailed modeling of water quality parameters would be required in simu-
lating the structural behavior of a project. Consequently, it is important
to define as precisely as possible the scope of the simulation study
and the study objectives.

The use of simulation as a tool in studving the operation of reser—
voir projects in the Akransas, White, and Red River basins is not new.
For at least 20 years various simulation studies using handcrafted simu-
lation models (i.e., manual routing studies) have been conducted by the
Little Rock and Tulsa District of the Corps of Engineers to evaluate the
operation of individual projects and systems of projects. What is new,
however, is the scope and complexity of the present simulation study.

Historically, studies of the projects of the A~W~R system have been



limited in both scope and objective. For example, the White River basin
projects have been studied as a system with respect to potential for
power production during adverse streamflow conditions. The limitations
here are fairly obvious: only the White River projects, primarily with
respect to hydropower production, and only for adverse streamflow condi-
tions. The reasons for the limitations are typical and valid, but
perhaps not so obvious. First, the availability of computer hardware
and usable simulation models has not been conducive to pursuit of a
study with comprehensive scope or objectives. Secondly, data have not
always been available to permit consideration of all important facets.
Thirdly, the concern and interest of the engineering personnel and
society as a whole did not encourage study of all facets that are now
important. And finally, manpower and budget constraints have, in effect,
limited the scope of past studies.

During the past few years, events have occurred that have increased
the feasibility of comprehensive studies of water resources systems.
Each of the constraints listed in the previous paragraph has been relaxed
somewhat in recent years, and is now possible to think in terms of a
study which will permit consideration of all completed and authorized
projects operating for all authorized and approved purposes. Although
it is impossible to fully consider all purposes at the present time
(primarily because of a lack of data and information necessary to define
the impact of operation decisions on some purposes), it appears that the
capability exists to study many facets of multiple~purpose operation

that are now vitally important, but which have not been studied in the



past. In fact, it appears that the capability exists to develop opera-
tion rules that would result in significant improvements in the system
operation, but which might not be amenable to implementation because

of a lack of institutional arrangements between Federal, state and

private ownerships in the basin.
ORGANIZATION OF THE SIMULATION STUDY

As soon as the scope and objectives of the study of operation of
the A-W-R system were defined it was obvious that the simulation model
could be developed only through use of a digital computer. The system
itself was analyzed to develop limits and formulate criteria for the
study. Basic physical, climatologic, and hydrologic data were collected,
analyzed and prepared for use in a computer study. Because of the
complexity of developing operation procedures for large multiple-purpose
systems it was decided that the analytical capability developed would
probably only permit a somewhat restricted study of the system as a
whole—--incorporating as much detailed information as possible for each
authorized and approved purpose. It was recognized that some aspects
of the system operation would require analyses that could not be
accomplished with existing or proposed comprehensive digital models of
water resource systems.

A program developed by The Hydrologic Engineering Center was selected
for the system study because it appeared to have the capability to
consider most of the factors that appear to be important for development

of operation rules for the A-W-R system. Several computer simulations



of the system were made to: (1) test the validity of the program for
use in studying the A-W-R system; (2) educate study participants in the
techniques of computer simulation models and familiarize participants
with the capabilities of the specific program; and (3) provide the
opportunity to modify and improve the program to fit the specific condi-
tions of the existing A-W-R system. These simulations demonstrated

that the HEC program was suitable for simulation of most important
conservation purposes of the A-W-R system,

A review of the initial computer simulation of the A-W-R system
indicated that the program would be most useful for comparing alternative
operation plans when the most important factors affecting the various
plans could be considered, either explicitly or implicitly, through
criteria and data for a monthly routing interval. In the opinion of
a majority of the study participants, the operation requirements for
purposes such as flood control, water quality enhancement and peaking
power operation, which usually require detailed short-period analysis
to accurately define their effect, were either relatively unimportant
with respect to the overall system operation plan or were adequately
simulated for comparative purposes in the monthly routing interval.
After the program was adopted for use in the A-W-R system studies, it
was decided that several system simulations or runs would be made to
attempt to identify the nature of a feasible system operation plan
and to determine, insofar as possible, the characteristics of the

specific operation prodedures that would constitute the plan.
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The operation of the system is studied by simulating its performance
through 45 years of historical hydrologic data. The range of hydrologic
events during this period is believed to be such that it includes repre-
sentative critical conditions for evaluating alternative operating plans
and gives a reasonable approximation of the long-term average output of

the systemn.

THE SIMULATION MODEL

Basically the computer program being used in the A-W-R system
study does essentially the same type of computation that has been done
with handcrafted simulation models in the past. Only the degree of
refinement, speed of computation, and degree of complexity have been
increased. In the computer simulation model (program) it is possible
to consider many more factors than could be considered in traditional
routing studies, to consider each factor in much more detail than it
has been previously considered, and to study a much larger system than
could previously have been studied.

Generally the computer program requires that the location of each
component in the system (i.e., reservoir, power plant, downstream control
point for flood control, etc.) with respect to the other components in
the system be specified and that operation requirements for all pertinent
purposes be specified at each reservoir and control point where the
purpose is significant. In general these requirements must be specified

in terms of a flow rate such as release in cfs or total river flow in cfs.
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However, it is also possible for requirements to be specified in terms

of storage volume remaining in a reservoir and kilowatt-hours of electrical
energy production. Since these three parameters do not always lend them-
selves to direct relationships with some operation objectives, it is
sometimes necessary for relationships to be developed externally. Tor
example, navigation operation may be dependent upon river stage at a
certain location. Although the program will not accept river stage as

an input parameter, the stage-discharge relationships at the location

can be developed externally, and the operation requirement in terms of
discharge can be c¢alculated and provided as input to the program.

In addition to specifying the operation requirements for each purpose
at each component of the system, it is necessary to describe the physical
relationships and constraints that control the operations of the component
(for example, outlet capacity, area-capacity relationship, installed
capacity of powerplants, spillway elevation-discharge relationships,
conduit invert elevations). Finally, if the system operation is to be
dependent upon the relative state of components (for example, the
generation of power at a powerplant to contribute to meeting a system
power requirement being dependent upon the reservoir storage at the
powerplant as compared to other powerplants in the system) operation
rules must be specified. All of the operation rules and operation
requirements and some of the constraints can be varied from period to
period, if desired (for example, power requirement of 2000 megawatt-hours
in January, 2700 megawatt-hours in February, 2500 megawatt-hours in Mareh, —

etc.). For the A-W-R study it was also necessary for the program to
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simulate in a crude fashion the operation of a thermal generation system,
because the relationship between the hydroelectric and thermal genera-
tion must be considered.

The computations performed by the program are based on the principle
of continuity as expressed by the equation

s, = S, . +1I,-4Q, -E,

i i-1 i i i
where,
Si = reservolr storage at the end of the current period, i
Si—l = reservoir storage at the end of the previous period, i-1
Ii = inflow volume during period i
Qi = release volume during period i
and Ei = evaporation volume during period i.

This basic equation, when I, Q, and E are properly defined, is appropriate
for storage accounting where the length of the period i is long enough
that the travel time through the reservoir is insignificant. It should
be noted that proper definition of I implies that all diversions into

the reservoir and releases from upstream reservoirs must be added to the
natural inflow to obtain the inflow volume; that proper definition of Q
implies that all diversions out of the reservoir, leakage from the reser-
voir, and releases for different purposes are added together to obtain
the total release volume; and that ¥ must reflect the gain or loss in
reservoir storage volume that would occur as a result of net evaporation
(evaporation minimum precipitation) over the impoundment area during

the period.
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Power calculations are based on the equation

GE, = .08464 Q, * h, - e,
i i i i
where
GEi = energy in kilowatt-hours generated during period i
Qi = flow in cfs through the generating units during period i
hi = effective head on the turbine during period i
e, = efficiency of the generating units during period i

This equation is appropriate for use when Qi has been defined as only
that part of the release volume which passes through the generating
units, when hi is defined as the head which exists during the period i
(calculated by subtracting tailwater elevation and head loss from the
reservoir surface elevation), and when e, reflects the average overall
station efficiency during period i. The calculation of head is based

on the elevation corresponding to mean reservoir storage for the current
period (average of the beginning and ending reservoir storage) and the
tailwater elevation is specified as either a constant value or as a
function of the mean release rate for the period.

The specific components of the entire system that contribute to
meeting a system requirement (such as system power requirement, a stream-—
flow requirement at a point downstream of several reservoirs, or a flood
control limitation at a downstream point) are specified in a manner which
insures that only those projects which should (with respect to legal or
institutional ability as opposed to physical capability) contribute to
meeting the system requirements are permited to do so. The system

requirements can either override or supplement the individual project
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requirements according to the study requirements. Operation rules are
specified to implement the desired interaction among projects in meeting
the system demand.

The simulation model operates by considering the water and power
requirements at each pertinent point in the system in a sequential fashion,
beginning at an upstream point and moving in a downstream direction
through each river basin. The release required to meet the at-site
requirements for all pertinent purposes is determined by evaluating each

operation requirement and all physical and operation contraints at each

site. Also, an index of the relative state of each reservoir (usually

a function of reservoir storage) is determined according to the speci-
fied operation guides. After all at-site requirements have been met at
all points in the system (or shortages declared if water is not available)
the various system requirements are examined to determine whether addi-
tional water releases or power generations will be needed to satisfy the
system demands. If so, the additional needs are proportioned among
projects that have been specified to be available for meeting that system
requirement in accordance with the relative state of the projects as
evidenced by the indices previously computed. The additional releases
are added to the previously computed releases for meeting at-site require-
ments, and the system and at-site requirements are thus met (or system
and at-site shortages are declared if water is not available). This
process 1s repeated for each period of the study, with the ending state
of the projects in the system for the current period being the beginning-

state for the next period.



Results from the successive applications of these calculations on
a period-after-period basis are recorded for all points in the system
(including nonreservoirs) by an accounting procedure which simply
accounts for the movement of the water through the system by using the
specified relative location of the reservoirs and downstream control
points. By adding releases to natural streamflow to obtain total stream-
flow, and by adding inflows to storage volume and subtracting releases
from storage volumes the state of any component and the flow at any
point in the system can be calculated. As these results are calculated
they are stored and finally printed out, on a2 project-by-project basis,
to produce a continuous record of inflow, storage, outflow, power genera-
tion, and other pertinent data. These results may be rearranged in many
ways to serve various needs in analysis or evaluation of the system
cperation.

Through careful examination and evaluation of the results, the
response of the system to the specified operation requirements and the
specified operation rules can be determined. If the response of the
system is satisfactory and if there are no deficiencies or inconsistencies
in the operation plan, the results can be used as a basis for implementing
the operation plan. 1If, on the other hand, the response of the system is
not satisfactory, the results must be examined further in order to determine
the nature of changes in the operation plan to produce a satisfactory
response. When the contemplated changes have been identified they must

be transformed into specific operation rules, and the entire simulation
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study must be repeated to determine the response of the system to the
modified rules. The entire process must be repeated until a satisfac-
tory system operation plan emerges.

The model also has the capability for relating hydrologic or
physical parameters to economic returns through the use of benefit
functions. Benefit functions can be specified separately for each
reservoir and downstream control point and for each different purpose,
if necessary. Furthermore, the benefit functions can vary seasonally
if this is necessary to reflect the seasonal variations in value of
water or storage for some purposes. At the end of each simulation run
the parameters such as regulated streamflow, power production and reservoir
storage are applied to the appropriate benefit functions to obtain an
indication of the relative economic returns which could be expected from

the operation plan used in the study.

STUDY RESULTS

The study of the operation of the A-W-R system is a continuing
study which will require that objectives and criteria be updated period-
ically to reflect the changes in priority of water use. Consequently,
there are no final results in the usual sense. However, analyses conducted
during the past 2 years have contributed significantly to understanding
of the system, given insight into the nature of potential improvements
in system operation rules, and provided information which can be used to

improve the operation efficiency of individual projects in the system.
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Coordination of hydroelectric generation and purchases of thermal
energy to meet Federal contractual commitments for power supply requires
that time and quantities of thermal energy purchases by the Federal
marketing agency be based on the relative state of the reservoir system,
Supplementary thermal energy is purchased only when it is needed to
augment the energy produced by the hydroelectric plants or when antici-
pation of deficient streamflows dictates that purchases should be made
to avert potential future shortages in hydroelectric energy production.

Operation guides of the type shown in plate 3, based on the perform-
ance of the system during the historical hydrologic record, are needed
to determine the timing and quantities of thermal purchases. System
energy in storage, the parameter used on plate 3 to indicate the state
of the system in making the decision to purchase energy, is believed
to be a better indicator than, say, water in storage in the system.
However, it is anticipated that problems may arise with respect to this
parameter because of the run-of-river plants on the Arkansas River being
unable to avail themselves of the benefits of storage on the White and
Red Rivers. It is anticipated that future studies may require modifi-
cation of this parameter to reflect the consequences of the inequitable
storage distributions. The application of weighting factors to the
computed energy in storage in each basin before developing a system
composite value for energy in storage would be one way of modifying the
parameter.

A major problem in the study thus far has been an inability to

quantify operational objectives for the existing system. Because
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comprehensive studies have not been performed in the past, the existing
set of objectives may be incomplete or inharmonious. The conflicts

are resolved by obtaining from the operating entity as much information
as possible, simulating the operation for a recent historical period
using that information, comparing the results with the actual operation,
questioning the operating entity about discrepancies, revising the
operation criteria and resimulating the operation. The process must be
repeated until a reasonable simulation is obtained. This is, however,

a valuable part of the overall study because it forces the engineer to
identify and quantify operation objectives. 1In cases where the current
operating plan has evolved from piecemeal revisions of old policies this
is a very valuable exercise.

Another related problem is the lack of information on criteria and
constraints associated with complementary and competitive interactions
among water use. Again, the absence of this information can be attributed
primarily to the fact that past studies were less comprehensive and did
not require this type of information. The current studies have been very
valuable from the standpoint of indicating specifically which areas need
additional study and consideration.

Another major problem associated with the study of the A-W-R system
is the tremendous volume of output generated in the study. Plates 4
and 5 illustrate the output of the program for 1 year of data in a simple
system with three reservoirs and a single downstream control point. Plates
6 and 7 illustrate some of the end-of-run summary information that can

be obtained. It can be seen that the output from a single simulation rum
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for a complex system such as the A-W-R system can easily amount to a
thousand pages or more. The need for numerous simulation runs rapidly
multiplies the output volume.

It is relatively easy to produce in a week or two far more output
than can be intelligently analyzed by many people in a year or so. The
roots of the problem and the key to its solution are in the presimulation
planning. Carelessly thought—out, limited objective studies with poorly
documented criteria almost always result in studies of only limited
utility. These studies frequently are not worth documenting and conse-
quently a valuable link in a chain of studies can be lost--making it
impossible to trace the logic of the sequence of studies after some
time has passed. In early stages of a simulation study the proper answer
to any question always seems to be "perform another simulation." However,
as the unanalyzed or partially analyzed studies pile up, it becomes
evident that this is not only not the proper answer—-it is often a very
poor answer. There is no substitute for a well-planned, properly executed,
carefully documented simulation study. Resisting the temptation to per—
form analyses as rapidly as possible leads to the discovery that a little
planning for a single simulation analysis can answer many questions and
save immeasurable time and manpower. Also, a little forethought in identi-
fying output parameters of value or of interest is well worthwhile. It
is much easier and much less costly to have the computer calculate and
print out parameters of interest than to have to develop them from the

output by hand,
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SUMMARY

Efforts expended to date in the A-W-R study and in other similar
water resource system studies indicate that simulation is an effective
tool for studying the operation of existing water resource systems.
However, much remains to be done before the power of simulation models
can be fully utilized and the benefits of the simulation study fully
realized. First, much work must be done to identify explicit operation
objectives and identify and quantify parameters that can be used to
measure whether the objective is being satisfied. Consistent and compar-
able measures of value for competing water uses must be developed if
rational choices are to be made when water deficiencies do not permit
full service to all demands.

Better techniques are needed for documenting data, assumptions,
and criteria used in the simulation studies and for documenting the
study sequence itself. Only when these techniques are more fully devel-
oped will the simulation study adequately serve as the basic reference
for developing and implementing an operation plan for a reservoir system.
Also, more thought must be devoted to determining in advance what output
is needed and its form and format so that selectivity can be used to
suppress unwanted and unneeded results. This must be done in order to
reduce the output volume to a manageable level in studies of large
systems. This implies that simulation models will possess the capability
for user-controlled selective output, and presently available models are

generally woefully inadequate in this respect.
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Finally, it would be desirable for the simulation model to possess
some capability for self-optimization in order to reduce the amount of
human intervention that is required to obtain an optimal or near-optimal
operation plan. However, the development of self-optimization capability
must, of necessity, follow some of the developments previously mentioned
such as quantification of operation objectives and comparable measures

of value for alternative water uses.
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