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DOWNSTREAM EFFECTS OF THE LEVEE OVERTOPPING AT
WILKES-BARRE, PA, DURING TROPICAL STORM AGNES(1)

By

Arlen D. Feldman(z)

ABSTRACT

A rainfall-runoff model for Tropical Storm Agnes in the Susquehanna
River Basin was developed. A reservoir operation model was also developed
in order to compute regulated streamflows. Susquehanna River flood dis-
charges were computed for Wilkes-Barre, PA, for both levee nonovertopping
and levee overtopping conditions. The levee overtopping conditions were
modeled using storage~ocutflow relations developed from water surface pro-
files for the Wilkes-Barre reach. If the levee had been sufficiently high
to contain the flow, the peak discharge would have been increased and
occurred earlier. Translating this earlier and larger peak downstream
would have resulted in practically a 10 percent increase in the peak dis-
charge at Sunbury. This large peak is due to both the increased peak
at Wilkes-Barre and coincident timing with the peak coming from the West
Branch of the Susquehanna River. Since the actual peak flow at Sunbury
was within inches of the top-of-levee, a potentially disasterous flood
could have occurred at Sunbury if the Wilkes-Barre levee had not been
overtopped.

BACKGROUND FOR THE STUDY

The Hydrologic Engineering Center was requested by the Corps of
Engineers, North Atlantic Division, to participate in a special hydrologic
study of Tropical Storm Agnes, June 1972, in the Susquehanna and three
other east coast river basins. The flood waters produced by Agnes rain-
fall along with local frontal storms produced record flooding in many
parts of the Susquehanna River Basin., The town of Wilkes-Barre, PA, was
particularly hard-hit when flood waters overtopped the levees and inun-
dated the flood plain on which most of the city was built, Cities down-

stream from Wilkes-Barre were also flooded, but the severity of the

(l)For presentation at the 54th Annual Meeting of American Geophysical

Union, April 1973, Washington, D.C.
(2

Research Hydraulic Engineer, The Hydrologic Engineering Center, U.S.
Army Corps of Engineers, Davis, California.



downstream flooding was reduced considerably by the disasterous flood
storage in the city of Wilkes~Barre,

The Agnes study included flood frequency, rainfall-runoff, reservoir
system operation, and water surface profile analyses in the Susquehanna,
Schuylkill, Potomac and James River Basins. The Corps of Engineers con-
tracted with Anderson Nichols, Inc., a Boston~based consulting engineering
firm, to perform the water surface profile analyses in the Susquehanna
River Basin. The water surface profile studies were used to verify existing
Muskingum flood routing criteria or to replace it with storage-outflow

relationships where the linear Muskingum method was not adequate.

STUDY OBJECTIVES AND MODELS USED

There were two major objectives in the Agnes study: investigate the
effect of this large event on previously computed flood frequency rela-
tionships; and develop mathematical models of rainfall-runoff and reservoir
operation. Results of the Susquehanna and Schuylkill River studies have
been reported in "Hydrologic Study ~ Tropical Storm Agnes, Report No. 2"
(reference 1). The mathematical models are to be used to assist in
studying new flood control projects and to compute regulated and natural
frequency curves. Two generalized computer programs developed by The
Hydrologic Engineering Center were used: HEC-1l, Flood Hydrograph Package
(reference 2), and HEC-5, Reservoir System Operation for Flood Control
(reference 3). A third computer program of The Hydrologic Engineering
Center, HEC-2, Water Surface Profiles (reference 4), was used by the

consulting engineering firm for their part of the project.

RAINFALL~-RUNOFF

Basin data for the HEC~1 rainfall-runoff and HEC-5 reservoir operation
models were obtained from the National Weather Service, U.S. Geological

Survey, and the Baltimore District of the Corps of Engineers. The National



Weather Service provided an isohyetal map of rainfall during the Agnes
flood and hourly rainfall data at recording stations. The Baltimore
District had previously conducted a comprehensive study of the Susquehanna
River Basin above Harrisburg, PA, the results of which were published in
Appendix D, "Hydrology,'" Susquehanna River Basin Study Report (reference 5).

The hydrology appendix delineated over 140 hydrologic subbasi
unit hydrograph characteristics. A map of the Susquehanna River Basin is
shown in figure 1, The report also specified the Muskingum routing cri-
teria for all of the reaches connecting the subbasins and forming the

river system. Reservoilr storage characteristics, general operation criteria
and actual Agnes operating results were obtained from the Baltimore District.
The U.S. Geological Survey provided stream gage data where available and
made estimates of flows where gages were washed out.

The rainfall input to the rainfall~runoff model, HEC~1,was constructed
using the isohyetal rainfall pattern to determine average total rainfall
for each subbasin and the recorder data to distribute this total rainfall
period by period. Emphasis was placed on reproducing the observed volume
of runoff while maintaining the timing and magnitude of the peak within
reasonable limits. Samples of computed and observed hydrographs at major
river stations are shown in figure 2. Table 1 summarizes pertinent data
about Agnes rainfall and runoff.

In order to be able to reconstitute the rainfall-runoff process for
Agnes, 1t was not necessary to use the reservoir system operation model,
HEC-5, because the observed reservoir releases could be given to the
HEC-1 model. The observed reservolr outflows were inputed directly into
HEC-1 and runoff was computed only for the areas below the reservoirs.

The principal use of the reservoir operation model was for evaluation
of future changes in reservoirs, levees and channel improvements on regu-

lated frequency curves.

COMPUTATION OF FLOOD FLOWS IN THE WILKES=BARRE REACH

The rainfall-runoff model was used to compute the inflow to the



Wilkes=Barre Reach of the Susquehanna River during Tropical Storm Agnes.
The aforementioned rainfall, loss rate, unit graph and linear routing
criteria were used to compute this flow. Although the linear Muskingum
routing criteria was not theoretically applicable in some of the routing
reaches during the high flows of Agnes, the inflow to the Wilkes-Barre
Reach and the flows in most other parts of the basin appear to be good
estimates of the observed flows when using the linear routing, The
closest upstream verification was at The Towanda, PA, gage and the com~
parison of computed and observed discharges were shown in figure 2b.

Flood routing through the Wilkes-Barre Reach was accomplished by
two different methods. First, the flows were routed by the linear Muskingum
criteria assuming that the levees were sufficiently high to contain the
Agnes flood flow. Second, the flows were routed by a nonlinear storage-
outflow method (modified Puls) considering the existing topography and
levee heights in the reach before the flood.

The results of the two routings are shown in figure 3. The peak
discharge of the linear routing is seen to be 27,000 cfs larger than the
nonlinear routing and 17,000 cfs larger than the observed peak discharge.
The peak discharge for the nonlinear routing is 10,000 cfs less than the
observed peak discharge.

It was difficult to simulate the levee overtopping condition at Wilkes~
Barre because of the manner in which the event occurred. The flood waters
were not believed to have eroded the levee on the rising limb of the hydro-
graph. Inspection of the levee area after the flood indicated that the
levee did not erode upon overtopping, but erosion occurred as flood waters
returned to the river channel on the falling limb of the hydrograph. Because
of the difference in storage volumes before and after the levee eroded, it
was necessary to develop two storage~outflow relationships for the Wilkes=
Barre reach--one for the rising and another for the falling limb of the
flood hydrograph.

The two storage-~outflow curves for the Wilkes-Barre reach were computed

with HEC-2, Water Surface Profiles. In the first case levees were considered



intact. In the second case levees were considered to be completely
destroyed.

The transition between the two storage-outflow curves was instan-
taneous when river stages reached the top of the levee, For computational
purposes it was necessary to make two passes through the computer to
route through the entire hydrograph. The results of the first pass
(s +-§ routing) were utilized to the point just beyond the peak discharge.
That furnished the starting storage with which to begin the recession
computation using the second storage-outflow curve., There was some loss
in volume because of basement and other storage in the city, but this
was not a significant portion of the 225,000 acre feet of flood waters

in the city at the time of the maximum flow of the river.

DOWNSTREAM EFFECTS OF THE LEVEE OVERTOPPING

The downstream effects of the levee overtopping at Wilkes-Barre were
analyzed by routing the hydrographs which resulted from the two routings
(with and without infinite levees in the Wilkes-Barre Reach) on downstream
to Harrisburg. Both routings took into account the flows from intervening
areas in computing the total Agnes flow at Harrisburg. The routed and
intervening flows between Wilkes-Barre and Harrisburg were computed in
the same manner for both of the hydrographs from the Wilkes~Barre BReach.
Muskingum routing coefficients were used for all the reaches below Wilkes-
Barre on the Susquehanna River and on its tributaries,

The results of the two computed flows and the observed flows are
shown in table 2. Figure 2c showed the comparison of computed and observed
flows at Harrisburg for the levee nonfailure routing at Wilkes=Barre. The
levee overtopping routing of the flows to Harrisburg was essentailly the same
shape with a reduced peak as noted in table 2.

It is noted that the computed peak flows (for the levee overtopping

case which occurred) differ from the observed peak flows by as much as



10 percent. Differences between computed and observed flows at most gage
locations on the mainstem and tributaries of the Susquehanna River system,
were less than 10 percent. The Agnes event was of such a magnitude (esti-
mated to be a 300 to 400-year return period at Harrisburg) that many of the
discharge gages did not function properly or were destroyed., For many of
the gages that did function correctly}the observed stages were at or beyond
the upper limit of the historical rating curve. During the time (August-
October 1972) when this project was being undertaken, it was not uncommon
to have the estimates of river discharges be updated as the flood was
studied in more detail,

Every possible effort was made within the time constraints of this
project to reproduce the observed flows. Because of the differences
between the computed and observed flows and because of the uncertainty
in the observed flows themselves, a more valid analysis of the effects
of the levee overtopping can be accomplished by a comparison of the two
computed flows. The differences between computed flows were shown in
table 2. The largest increase in flow would have occurred at Sunbury if
the levee had not been overtopped. This increase would have been about
71,000 cfs.

The potentially large increase in flow at Sunbury was due to both
the larger peak at Wilkes-Barre (about 27,000 cfs) and the coincident
timing with the peak flow coming from the West Branch of the Susquehanna
River. The peak flow at Wilkes=-Barre, without the levee overtopping,
occurred about 20 hours earlier than the peak flow with the levee being
overtopped. The difference between the two hydrographs was 77,000 cfs
at the time of the earlier peak flow at Wilkes-Barre. The occurrence of
the peak at this earlier time would have made it coincide with the peak flow
from the West Branch when they met at Sunbury. The difference of
77,000 cfs would reduce to about 71,000 cfs when routed to Sunbury.

The potential increase in flow was not as large at Danville because
Danville is above the confluence with the West Branch and the coincident

timing could only have been with the local flow. The increase in flow



was also less at Harrisburg; this was due to the effects of the routing
from Sunbury to Harrisburg as well as the effect of the large amount of
tributary flow which would have occurred in either case.

The Agnes flood peak that occurred at Sunbury was within inches of
the top of the levee at that location. The increase in flow that would
have occurred if the Wilkes-Barre levee had not been overtopped would
have undoubtedly brought about severe flooding at Sunbury and increased
the flooding at Harrisburg. It is difficult to determine whether the
inundation of Sunbury and the increased flooding at Harrisburg would
have caused more or less economic loss than what actually occurred at
Wilkes~Barre. Damage estimates for floods of this magnitude are subject

to much uncertainty as are the flows themselves,
SUMMARY

The Agnes flood in the Susquehanna River Basin above Harrisburg, PA,
was modeled for existing conditions and for the possible conditions of a
higher levee at Wilkes-Barre. The potential impact of a ficticious, high
levee which could contain the flow at Wilkes~Barre was analyzed in terms
of changes in downstream discharges. It was found through a comparison of
two sets of computed flows that the Agnes flood could have been about 71,000
cfs larger at Sunbury and 58,000 cfs larger at Harrisburg if the Wilkes-
Barre levee had not been overtopped. The increased flow would have been
due to both a larger and earlier peak discharge at Wilkes-Barre that would

have coincided with the peak discharge from the West Branch at Sunbury,
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6T

Location

Susquehanna River
above:

Waverly, NY
Wilkes~Barre, PA
Harrisburg, PA

Chemung River
above:

Chemung, NY
West Branch
Susquehanna River
above:

Lewisburg, PA

Juniata River
above:

Newport, PA

(1) Probable Maximum Storm, U. S. Weather Bureau, "Hydrometeorological Report No.

Table 1.

Summary of Agnes Rainfall and Runoff

Drainage

Area (mi?)

4,780
9,960
24,102

2,530

6,847

3,356

Rainfall (in)

Agnes PMS (1)
4.47 15.5
6.63 14,2
9.08 12.7
9.38 18.4
9.92 16.4

10.17 18.8

{(2) Volume of flow for period June 21-28, 1972, inclusive.

(3) For Tropical Storm Agnes.

Runoff Volume(2)
Acre-feet Inches

869,000 1.4
2,490,000 4.7
7,813,000 6.1

768,000 5.7
2,367,000 6.5
1,143,000 6.4

Runoff Factor(3)
(% of Rainfall)

76
71
67

61

66

58

40," May 1965,
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