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EFFECTS OF DAM REMOVAL: AN APPROACH TO SEDIMEHTATION

ABSTRACT

In recent years hydraulic structures such as dams have been removed
due to deterioration, increased maintenance cost or obsolescence. Inves-
tigation of the hydraulic, hydrologic, and sediment transport consequences
of the removal of these structures have been very limited, thus necessitating
the establishment of analytical technigues and procedures to adequately
predict these effects.

To properly evaluate the development of techniques and procedures, a
model must be selected that closely simulates the actual behavior of the
phenomenon being modeled. A mathematical model (HEC-6) was selected because
of its success in the prediction of sediment transport when applied to a
wide variety of cases. The removal of the Washington Water Power Dam on the
Clearwater River near Lewiston, Idaho, was selected for study.

Procedures and techniques of calibration and verification developed,
comparison of actual and predicted volume of sediment transported, where
the sediment scoured or deposited, and their rates are presented. There
is discussion of the applicability of the model to this type of problem,

limitations of a one-dimensional model, and interpretation of the results.
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EFFECTS OF DAM REMOVAL: AN APPROACH TO SEDIMENTATION
David T. Williams*

I. Introduction

In February of 1973, the Washington Water Power Dam (WWPD) on the Clear-
water River, Idaho, was removed because of increased maintenance costs and
obsolescence. As a result, changes occurred in the hydraulic and sedimentation
characteristics of the river. The purpose of this study is to determine how
the observed changes occurred, to develop a suitable analytical technique for
such studies, and to evaluate and verify a maihematica] model used to predict
the observed changes. The changes in the river bed include the rate of depo-
sition or scour along the river bed, the magnitude of deposition or scour at
times subsequent to the removal of the dam, and changes in the hydraulic and
sediment transport characteristics of the river following dam removal.

In the past most of the studies related to dams have beenh in the area of

construction design and the hydraulic, hydrologic, economic, social, and envi-

ronmental impact of their placement. No assessments were made concerning the

measures (e.g., dam removal) that must be implemented at the end of their
design 1ife (typical design 1life of a dam is 50 years). During the Depression
Era (1930's) many dams were constructed that have a designed 1ife that will
terminate in the 1980's. Most of these dams reguire a high level of mainte-
nance as a direct result of age and are becoming increasingly cost ineffective.

Large dam systems that have been implemented in Tater years have made many
minor dams obsolete. The disposition of an obsolete and/or decaying dam is a
problem that will be addressed even more frequently in the future.

Removal of a hydraulic structure such as a dam causes changes in the

hydraulic and sedimentation characteristics of a river which subsequently

*Research Hydraulic Engineer, The Hydrologic Engineering Center, U.S. Army,
Corps of Engineers, Davis, California
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caused adverse effects on both man and the environment. If the effects of the
dam removal are predictable through the use of an analytical technique and a
mathematical model, measures (e.g., gradual removal) could be implemented to
lessen the impact of the adverse effects.

The removal of the Washington Water Power Dan (WWPD) on the Clearwater
River was selected for study because of the available sediment data before
and subsequent to the dam removal. This data was gathered by the U.S.
Geological Survey and the Walla Walla District of the Corps of Engineers and
was obtained mainly for an ongoing study of the Snake and Clearwater Rivers.

Clearwater River is a tributary of the Snake River in Idaho and services
a drainage area of 9,570 miles. Figure 1 shows a map of the drainage basin.
The confluence of the Snake and Clearwater Rivers was defined as River Mile O
and cross-section locations are in terms of river miles upstream along the
Clearwater River.

Washington Water Power Dam was located at River Mile 4.62. 1In operation
since 1928, the dam was approximately 35 feet high and 1100 feet long. The
dam was of concrete construction with moveable gates which allowed submerged
flow. During the month of February, 1973, the dam was removed by large cranes
and minimal explosive demolition. The entire operation was performed during
a low flow period.

Located downstream of the confluence of the Snake and Clearwater Rivers
is the Lower Granite Dam. The impoundment of water behind this dam began in
February 1975. In June 1975, the Lower Granite Reservoir and Lock facilities
became fully operational. This impoundment has an important role in the
sediment balance of the study area because the backwater effects of the Lower
Granite Reservoir extends into the study area and the analysis period includes

the time of impoundment.
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II. Basic Approach: Mathematical Model

The behavior of a 7.83 mile reach of the Clearwater River is simulated by
a computer program and results compared to field data to evaluate and verify
the computer program. These comparisons are used to determine the suitability
of the analytical techniques to studies of this type. A1l computer applica-
tions were conducted at The Hydrologic Engineering Center (HEC), Davis,
California.

The mathematical model selected for use in the analysis of dam removal
effects is a generalized computer program entitled "HEC-6, Scour and Deposition
in Rivers and Reservoirs" and is distributed by The Hydrologic Engineering
Center, Corps of Engineers (Computer Program Number 723-62-L2470). This
computer program was selected because of the general success in its usage
over a wide variety of applications (8) and the accessibility of the program,
The sediment transport methods available for use in the program are those
developed by Toffaleti, Laursen, Duboys, and Yang. Toffaleti's transport
method was used in the study (10).

This simulation computer program is designed to analyze scour and depo-
sition by modeling the interaction between the water-sediment mixture, sedi-
ment material forming the stream's boundary and the hydraulics of the flow.
This is not a sediment yield program per se. It simulates the ability of the
stream to transport sediment and considers the full range of conditions
embodied in Einstein's Bed Load Function plus silt and clay transport and
deposition, armoring and the destruction of the armor layer. Figure 2 shows
a Functional Flow Chart of HEC-6 (9).

The Timitations of the computer program are related to the one-dimensional
aspect of the model, since it is a one-dimensional steady flow model with no
provision for simulating the development of meanders or specifying a lateral

distribution of sediment load across a cross section. The cross section is
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subdivided into two parts with input data -- that part which has a moveable
bed, and that which does not; and the boundary between these parts remains
fixed for the study. The entire moveable bed part of the cross-section is
moved vertically up and down. Bed forms are not simulated except that n-values
can be functions of discharge which indirectly permits a consideration of bed
forms to be made. Density currents and secondary currents are not accounted

for (9).

III. Data Collection and Processing

Each of the cross-section geometry measurements used in the study were
made by the Walla Walla District of the Corps of Engineers. A sonic fatho-
meter with a resolution of + .1 feet was used for the depth determination.
These measurements were transferred to a Cartesian coordinate system plot
and encoded into a format usable by the model.

A1l sediment Toad measurements were made by the U.S. Geological Survey
(1, 2, 5, 6) through a cooperative program sponsored by the Walla Walla
District. The suspended load was measured by P-1 or P-3 suspended-sediment
samplers (3). Both point collection and depth-integrated samples were
collected for analysis of concentration and grain size distribution. These
measurements were made for various discharges over a 5 year period. Conver-
sion of concentration to tons per day was made by the equation:

tons/day = .0027 X concentration (mg/1) X discﬁarge (cfs)

These discharge vs. suspended sediment Toad data are plotted in Figure 4.
Bed load was measured using a Helley-Smith type bedload sampler (4).

Figure 4 has a scatter of data but a definite relationship exists between
the sediment Toad and discharge. A least-squares fit was developed for
suspended and bedloads by the USGS (6). The two sediment loads of the

least-squares curve were added to produce the total sediment load curve shown

(9>}
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in Figure 4. From collection of many samples, an averaged grain size distri-
bution of the inflowing sediment load was developed. The corresponding per-
cent of the total load was determined for each grain size class. With the use
of the total load curve in Figure 4, the percent of each size class was
multiplied by the total load at a certain discharge to obtain the sediment
load contributed by the grain size fraction for that discharge. Using the
same procedure for other discharges, a discharge~-sediment load curve was
developed for each grain size fraction. These relationships determine the
grain size distribution and weight of the inflowing sediment load for each
hydrograph discharge.

Bed material particle size distribution was determined by sieve analysis
of bulk samples one cubic foot in volume. Only three bed measurements were
made on the Clearwater River. The first measurement was made about two miles
above the upstream boundary of the model, the next at about mile 4.74 and the
last measurement was made near mile 2.0. In the initial phase of the model
calibration, the first measurement was considered to represent the bed from
mile 7.83 to mile 5.56. The second measurement represented the bed from mile
5.39 to mile 4.62 (site of Washington Water Power Dam) and the last measure-
ment, mile 4.61 to mile .67.

Historic mean daily flows were obtained for the years 1966 to 1975 at the
USGS gage in Spalding, Idaho (7). Located near the upstream boundary of the
model, the gage used a calibrated stream-flow gage which related the measured
water height to discharge. Future hydrology was predicted by assuming
(assumption was made by the author) that the historic events would occur in
the same sequence and intensity in the future. The hydrology of 1980 was
assumed to be that of 1970, 1981 assumed to be that of 1971, etc.

The stage-discharge rating curve at the downstream model boundary (before

Lower Granite Reservoir impoundment) was determined by observed stage heights



for a wide range of flows. This rating curve was the downstream boundary
condition for the model and determined the starting elevation for water
surface profile calculations for any particular discharge. A constant water
surface elevation of 738 feet was used after the impoundment of Lower Granite
Reservoir in 1975.

A value of .03 for n was selected for the channel and overbanks. This
compares favorably with other rivers of this type with calibrated n values of
approximately .03, Calibration of this n was not possible due to the lack of

water marks or discharge vs. depth measurements upstream of model boundary.

IV, Model Calibration and Verification

Computer runs were made in a "fixed bed" mode (i.e., no bed elevation
change) with various discharges. The water surface elevation was calculated
at each cross-section with an operating pool elevation of 761 feet at the
Washington Water Power Dam (River Mile 4.62). Checks were made to insure
that the water surface elevations did not exhibit unusual characteristics.

The model was verified by analyzing known historical stream bed condi-
tions and using them as performance criteria. Figures 5, 6 and 7 show the
change in bed elevations upstream of the WWPD. Looking at the lines repre-
senting the dam in place condition, the figures show only slight bed elevation
change. This was expected because the WWPD has been in operation for a long
time. A slight overall deposition trend was calculated upstream of the dam,
indicating that the reservoir was not completely filled with sediment at the
time of dam removal.

Figure 8 shows the change in bed elevation downstream of the WWPD. It
shows siight degradation of the bed elevation with the dam in place. This
again is reasonable because the inflowing sediment load to these sections is

deficient (caused by the WWPD) compared to the sediment load under natural

conditions. The model also showed slight overall scour downstream of the dam.

L5
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It is difficult to determine whether variations in sediment yield are
caused by variations in discharges or changes in the hydraulic regime such
as those caused by dam removal. For example, if a dam is removed, the down-
stream sediment yield should be greater because of the scouring of the sedi-
ment pool behind the original dam. However, the sediment yield would be
distorted if, during the period of analysis, high water discharges with the
associated high sediment discharges occurred. To compensate for this varia-
tion caused by the flow, the ratio of sediment outflow to sediment inflow was
used to measure scour and deposition trends. This ratio is dimensionless and
is independent of water discharge variation. A ratio of 1 indicates no change
(i.e., equilibrium: what goes in, goes out), less than 1 indicates sediment is
being accumulated (deposition), and greater than 1 indicates sediment is being
removed from the bed (scour).

Figure 9 shows the computed change in the inflow/outflow ratio over a
10 year period with the dam in place. Without the Lower Granite Reservoir
impoundment, the curve indicates slight deposition (ratio <1) with a tendency
to 1 (equilibrium). This leads to the conclusion that the WWPD was still
causing slight deposition but that reservoir had almost reached its capacity
of sediment. With the Lower Granite Reservoir impoundment, greater deposition
occurs within the study area because the inflowing sediment load is being
dropped because of the influence of the downstream reservoir. There is a
tendency towards equilibrium as the Clearwater arm of the Lower Granite
Reservoir begins to fill. It appears that equilibrium will occur sometime
after 1983. The inflow/outflow ratio at 1974 in Figure 9 shows initial scour
and reason indicates that it should be deposition. This discrepancy is
attributed to slight error in the initial condition which the model adjusted

as calculations were made over time.
Figure 10 shows the predicted volume of sedimentation within the model
boundaries with the WWPD in place. Without the Lower Granite impoundment,

15
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the model showed that an additional deposition of approximately 40 acre-feet
would have occurred in the WWPD pool if the WWPD dam had remained in place for
10 more years. With the Lower Granite Reservoir impoundment, deposition in
the study area would have been about 650 acre-feet over 10 years. All the
deposition occurs downstream df the WWPD. These trends are to be expected

under the operating conditions specified.

V. Dam Removal Results and Discussion

Measured bed elevation changes were determined by analysis of measured
cross-section geometry for February 1973, September 1973, April 1975, November
1975, and August 1975. Bed elevation change from February 1973 to September
1973 was determined by overlaying the cross-sections (must be of the same
scale), planimetering the area below a common elevation datum where both
cross-sections meet, finding the difference in the areas, and dividing the
resulting area by the width of the bed portion that moved. This procedure
was also used to obtain the bed elevation changes for other time increments.

Figures 5, 6 and 7 show the observed change in bed elevations upstream
of the Washington Dam site. The comparison between the measured and observed
bed elevation change for River Mile 4.74 (Figure 5), the section immediately
upstream of the dam site, shows good correlation for both timing and magnitude
of bed elevation change. Figure 6 indicates general agreement between the
measured and computed magnitudes of bed elevation change over an extended
time period. The fluctuations of the measured bed elevations in Figure 7
1imit any analysis of the overall tendencies of the bed. Any further analysis
would require more data points both within the points actually shown and
beyond 1976. The overall magnitude of the computed bed elevation changes
were in fairly acceptable agreement with the measured changes. Projections

into the future revealed that the sections would slowly continue to scour.

18



The timing of the measured and computed bed elevation changes for
Figures 6 and 7 appear to lag by approximately 10 months. The rate of
scour decreases significantly near the end of 1973 for the measured data
and the middle of 1974 for the computed.

Adequate information to determine bed elevation changes for 1973 to
1975 were not available for the sections downstream of the dam site. For
the purpose of analysis, the April 1975 bed elevation was assumed to be that
of the computed elevation at that time and measured bed elevation changes are
determined by changes from the April 1975 measured bed elevation.

Since very little bed change occurred downstream of the dam site for
both the measured and computed cross-sections, it is rather hard to discuss
the accuracy of timing and magnitudes of change. Discussion is then limited
to tendencies shown by the model and prototype. As shown in Figure 8, the
model calculated initial scour after the WNPD was removed, and both the
computed and measured sections showed depositional tendencies after impound-
ment of Lower Granite Reservoir. Projections into the future indicate
continued deposition at these sections. This deposition will probably
continue until Lower Granite Reservoir reaches an equilibrium condition.

No suspended and bed load measurements were available to determine the
'sediment load. Because of this lack of field data, analysis must be concen-
trated on the reasonability of the model results when compared to what is
actually expected to happen.

As shown in Figure 11, the ratio of outflow to inflow indicates rapid
scour in the first year after dam removal. Without the Lower Granite Reservoir
impoundment, the ratio indicates a decrease in the scour rate after the first
year. The projection into the future shows continued but decreasing scour

with equilibrium eventually being achieved. With the impoundment there occurs

a transition from scour to deposition and then a decrease in the deposition

with a tendency toward equilibrium.
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The quantity of sediment deposition or scour within the model limits 1is
presented in Figure 12. This plot shows that calculated volume changes were
as expected. The cumulative volume became negative (scour) after the dam was
removed and continued this trend fairly uniformily for the case of no impound-
ment. With the impoundment, the graph shows an immediate increasing trend and
eventually became positive in 1979. Figure 10 shows that the predicted volume
of deposition after ten years with the WWPD in place and Lower Granite Reservoir
impounded is 620 acre-feet. In Figure 12 the predicted volume of deposition
after ten years, with the WWPD removed and the Lower Granite Reservoir
impounded, is 400 acre-feet. This indicates that the total effect of the
dam removal after ten years is the removal of 240 acre-feet of sediment from
the model limits.

Figures 13, 14, 15 and 16 show the observed particle size distributions
of the sediment on the stream bed before WWPD removal and the calculated
particle size distribution eight years after removal. Figure 13 shows the
bed becoming finer after the dam removal. This is expected because it is the
section closest to the Lower Granite Reservoir impoundment. Figure 14 shows
the section immediately downstream of the dam site and exhibits a slightly
finer particle distribution after the dam removal. The most abrupt bed change
is expected at the dam site.as shown in Figure 15. Coarsening of the bed is
expected due to the increased velocities after dam removal. Figure 16 shows
very little bed change because it is out of the influence of the former
WWPD pool.

At the end of 10 years of flow through the model with the dam removed,
the bed profile was determined and artificial flows were input to determine
the new water surface profiles. These new bed and water surface profiles are
presented in Figure 17. Thalweg and average bed profiles show a lowering of

the bed immediately upstream of the dam site and deposition in the scour hole
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immediately downstream of the dam si{te. The influence of the Lower Granite
Reservoir impoundment can be seen by the higher elevation from River Mile

.67 to 2.0.

VI. Sensitivity Tests

Several sensitivity tests were made to determine the effects of input
changes on scour and deposition rates and eventual bed elevations. Changes
were made in each of the following: Manning's "n", bed grain size distribu-
tions, cross-section distance,

Manning's "n" was changed from .03 to .024 which resulted in only a small
change in the scour and deposition rates. Resulting bed elevation change was
insignificant.

The bed particle distribution upstream of the Washington Power Dam site
was made finer by inputting a bed particle distribution having a D50 of .1
millimeter, This resulted, as expected, in a slight increase in the scour rate.
The bed elevations ten years after the dam removal were about 20% lower than
with the original bed particle distribution. The timing of the computed bed
elevations in Figure 6 could have approximated the measured elevations if the
bed particle distributions were made finer. However, the distributions
required to do this were significantly different from any of the observed
distributions.

Additional cross-sections were inserted in the model with same geometry
as the immediate (measured) downstream cross-section. These sections were
inserted such that the model had a geometry section every 100 feet along the

river axis. This resulted in no appreciable change in scour or deposition.

VII. Conclusions

The comparison of measured and computed final bed elevations, with the

dam removed, was very satisfactory. Overall long range trends for each
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operating condition was as expected. The calculated rate of scour was
accurate at the WWPD site (River Mile 4.62) but lagged by approximately ten
months at other upstream sections. This difference can be attributed to
localized scour and "layering" of the bed particle distribution. Neither
can be modeled by HEC-6.

Some of the variations in the rate of scour and deposition can be
attributed to the limitations of a one-dimensional model. Dam removal is a
multidimensional phenomenon and would best be modeled using a two or three
dimensional model. These types of models are limited by the amount and type
of data available, computer time/cost, and input requirements. If only the
long range average bed elevation changes are desired, a one-dimensional model
would be sufficient. If scour and deposition rates are of concern, a one-
dimensional model may not fully simulate the physical occurrence and a two-
or three-dimensional model may be needed. To the author's knowledge, dam
removal has not been modeled using a two- or three-dimensional model. Because
of this, going to a multidimensional model does not guarantee a significant
increase in accuracy.

Possible sources of errors were previously mentioned. If these errors
were minimized by more accurate data and transport relationships, the one-
dimensional model may be sufficiently accurate for the objectives of a sedi-
ment study. Many of the errors mentioned are also applicable to the two- and
three-dimensional models; therefore, any errors from these sources would also
occur in these models. HEC-6 can be used confidently on dam removal studies
if:

a. Bed particle size distributions are available upstream and down-
stream of the dam.

b. Only long term scour and deposition rates are of concern.

c. Average bed elevation changes are desired.
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d. No unsteady flow phenomena occurs.

e. Cohesive sediment is insignificant.

VIII.Recommendations

The results of the usage of a one-dimensional model for predicting the
effects of dam removal were very encouraging. Further study should be made
with a one-dimensional model with the use of measured bed particle size
distributions at each cross-section. Another case study should be made with
bed measurements upstream and downstream of the dam site made before and
after dam removal. This would help to determine the applicability of a one-
dimensional model and the expected errors due to the limitations of such a
model. The results should then be compared with the results of a two- or
three-dimensional model to determine if accuracy is increased enough to
warrant the use of a multidimensional model and its associated costs and input
requirements.

Sensitivity tests have indicated that bed éTevations were very sensitive
to bed particle size distributions. It is recommended that this type of
measurement be made at each cross-section in subsequent studies.

It is recommended that when dam removal studies are made using a one-
dimensional model, calculated scour rates be closely examined and interpreted
with consideration of the effects of secondary currents, localized scour, and

"layered" bed particle size distribution.
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