US Army Corps
of Engineers
Hydrologic Engineering Center

Stochastic Analysis of Drought
Phenomena

July 1985

Approved for Public Release. Distribution Unlimited. TD'25



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive
Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
July 1985 Training Document
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Stochastic Analysis of Drought Phenomena

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
David Goldman

5e. TASK NUMBER

5F. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Corps of Engineers TD-25

Institute for Water Resources
Hydrologic Engineering Center (HEC)
609 Second Street

Davis, CA 95616-4687

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/ MONITOR'S ACRONYM(S)

11. SPONSOR/ MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Droughts are caused by both hydrologic and socioeconomic components. This document concentrates on stochastic models
of streamflow as the hydrologic component of drought. Stochastic models of drought are presented to the water resource
engineer as an extension of the more commonly understood flood frequency analysis. The extension can be made because
flood frequency analysis utilizes stochastic models of independent random variables whereas drought analysis utilizes
stochastic models of dependent random variables. There are many different stochastic models that have been implemented
to describe dependent random variables. A comparison of these models indicates that simple ones, such as the
autoregressive model, are adequate for the water resource engineer's needs.

15. SUBJECT TERMS
stochastic hydrology, drought analysis, autoregressive model, crossing theory

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE OF OF
U U U ABSTRACT PAGES 19b. TELEPHONE NUMBER
uu 154 :

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18




Stochastic Analysis of
Drought Phenomena

July 1985

US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street

Davis, CA 95616

(530) 756-1104
(530) 756-8250 FAX
www.hec.usace.army.mil TD-25







STOCHASTIC ANALYSIS OF DROUGHT PHENOMENA

CONTENTS

List of Figures. . . . . . . v v v v v v v v v v e e e
List of Tables. . . . . . . . . . . . . . v v v v v v v ..
Acknowledgements. . . . . . .

Preface.

Section 1: Drought Identification.
1.1 Drought Definition.
1.2 Drought Analysis Tasks.
1.3 Summary. . e

Section 2:
2.1
.2

2

2.3

2.

2

2

Section 3:
.1

3

3
3
3

3

.2
.3
4

W www
O 00~

4

.5

.6

.5

Introduction . e e e e e e e
Stochastic vs. Deterministic Models.
Independent Random Variables. . . .
2.3.1 Probability.

2.3.2 Probability Model Inference
2.3.3 Probability Model Moments. . . .
2.3.4 Moment Estimators. . . e e e

Dependent Random Variables.

2.4.1 Time Series Analysis. . . . . . . . . . . . . . .
2.4,2 stationarity and Ergodicity. . . . . . . .
2.4.3 Probability Models for Dependent Random Varlables
2.4.4 Dependence and Linear Regression Analysis. .
2.4.5 System Memory, Serial Dependence and the Correlogram.
Regional Analysis. . . . . . . . . .

Summary. . . . . . . . e e e e . .

Autogressive Models for the Streamflow Process.
Introduction. . . . . . . .
Selection of the Marginal Dlstrlbutlon
Autoregressive Model Formulation for Annual Flows
Monte Carlo Simulation.
3.4.1 Methodology.
3.4.2 Transformations. . .
HEC-4 Monthly Autoregressive Streamflow Generator .
3.5.1 Basic Methodology. . . . . . . .
3.5.2 Transformations of Historical Data
3.5.3 Statistical Analysis Performed by HEC-4.
Example Application. . . .
Annual vs. Seasonal Autoregres51ve Models
Simulation with Synthetic Streamflows.
SUMMATY . . . v v v v v v e e e e e e e e e e e e e e

Stochastic Models Based on Introductory Probability Theory.

. 14
. 14
. 15
. 27

. 43

NN R

10

28

31
31

. 36

39

50

55

58

61

. 61
. 63

68
71
71
75
78
78

. 80
. 81

84
92
g3
95



CONTENTS (Continued)

Section 4: Drought Analysis.
4.1 Introduction.
4.2 Theory of Runs.
4.3 Drought Duration Analy31s
4,3,1 Exact Calculation of Probable Drought Duratlon

4.3.2 Probable Drought Occurrence by Monte Carlo Simulation.

4.4 Summary. . . . . . o . . . .

Section 5: Evaluation of the Autoregressive Model.
5.1 Introduction. . . . . . . . . . . . .
5.2 Persistence. . . e e e e e e e e e e e e e e e e e .
5.2.1 Introductlon e e e e e e e e
5.2.2 Definition. . . e e e
5.2.3 Physical Interpretatlon. o e e .
5.3 Model CompariSOnsS. . . . + « ¢« ¢ + 4 4 4 4 e e e e e ..
5.4 Summary. . . . . 4 4 e v 4 e e e e e e e e e e e e e e e .
Section 6: Concluding Remarks.

List of References. . . . . . . . . « . . .

ii

97
. 97
. 97

. 100
. 100

105

. 111

. 113

113

. 113

113

. 114

116

. 120

27

. 129

. 132



2.7
2.8
2.9
2.10
2.11
3.1
3.2
3.3
3.4

LIST OF FIGURES

The Truncation Level. . . . . . « . + +« « « « « &

High Flows, Low Flows, Droughts, Floods and the Integral Period.

Comparison of Annual Streamflow Volume Histogram and Normal
Distribution. . . . . . . . . . . . . . . ..

Relationship between PDF and CDF. . . . . . . . . . . . .

Comparison of Annual Streamflow Volume, Cumulative Frequency
Distribution and Normal CDF. . . . . .

Annual Streamflow Volumes on Normal Probability Paper.
Skewed Probability Functions. . . . . . . . . .+ . « . + . . .

Time Series, Trends, Periodicities, Spurious Events and Random
Phenomena.

Trends and the Normal Independent Process.

Ergodic Processes. .

Linear Regression. .

Streamflow Autocorrelation.

Correlogram. . . . .

Effect of Extreme Points on Skews.

Flow Volume Frequencies on Log Normal Probability Paper .
Significance Test with z Statistiec.

Example Mass Curve Analysis of Synthetic Streamflow Sequences
of 50 Years. . . . .

Example HEC-4 OQutput. . . . . . . . . . .

Distribution of Reservoir Storages for Synthetic Sequences of
50 Years. . . . .

Run Parameters. . . .+ . & « o ¢ o o« s 4 e e e e e e v s s

Drought Duration Histograms Derived by Monte Carlo Simulation.

Drought Severity Historgrams Derived by Monte Carlo Simulations.

Rippl Diagram for Hurst Coefficient. . .
Cumulative Departures from the Mean.

Annual Streamflow Models Based on lag one Serial Correlation
Coefficient Recommended by Bowles, et.al., 1980.

iii

18
23

25
26
29

33
. 34
38
. 45
52
. 53
. 67
77
83

86
88

. 91

99
108
109
118
119

124



2

3

4.

5

.2

.1

.1

LIST OF TABLES

Page

West Branch of the Oswegatchie River, Harrisville, NY, Annual Flow
VOLUMES . + v v v v v v e e e e e e e e e e e e e e e e e e e e 1T

Plotting Positions for Annual Flows of the West Branch of the

Oswecgatchie River, Harrisville, NY. . . . . . . . . . . . . . . . 20
Example Monte Carlo Simulation. . . . . . . . . . . . . . . . . . . . 74

Comparison of Probable Drought Duration Obtained by Exact and Monte
Carlo Methods. . . . . . v v & 4« « 4 4 « & o o & o « +« o « & « . 106
Sample Statisties for Monte Carlo Simulation. . . . . . . . . . . . 110
Calculation of the Hurst Coefficient. . . . . . . . . . . . . . . . 117

Appendix A Computer Program for Drought Duration and Severity

Calculation. . . . . + « v v v 4+« e e 4 e e+ o« . . 135

iv



Acknowledgements

This document would not have been possible without the support of the
HEC staff. 1In particular, thanks are given to Bill Johnson, whose general
guidance and support were invaluable to the completion of this document.
Also, the support of Arlen Feldman (Chief of Research) and Darryl Davis (Chief
of Planning) was also very valuable. Technical assistance was received from
many members of the HEC staff. The comments of Mr. Harold Kubik were
particularly valuable. The production of the manuscript was made possible by

the efforts of Cathy Lewis, who performed the technical typing.

Special thanks are given to William L. Lane (United States Bureau of
Reclamation) for his technical assistance. Dr. Lane's comments were

invaluable in correcting errors and omissions in the original manuscript.



Stochastic Analysis of Drought Phenomena

Preface

The study of extreme hydrologic events is of great importance because of
their socio-economic impact. 1In fact, a great deal of time and effort has
been invested in predicting the occurrence and quantifying the effects of
hydrologic extremes. The effort expended in studying hydrologic extremes has
been disproportionally focused on flood phenomena in comparison to the efforts
made in studying droughts. However, the increasing demands on available water
resources make the quantification and prediction of drought essential to water

resources planning.

Although droughts have not been studied as extensively as floods, there is
a growing body of knowledge on the subject. The purpose of this presentation
is to discuss the current thinking on analyzing droughts, and to relate this
analysis to the more frequently use and commonly understood flood frequency
analysis. The presentation is divided into six sections. Section 1, Identifi-
cation of Drought and Low-Flow, discusses the factors which can be used to
identify these extreme events in the hydrologic record. Section 2, Stochastic
Models Based on Introductory Probability Theory presents an introduction to
the use of probability and statistics to model hydrologic phenomena. Section
3, Autoregressive Models for the Streamflow Process, a particular type of
stochastic model is presented and example applications are given. Section 4,
Drought Analysis, the stochastic models developed previously are applied to
the drought analysis problem. Section 5, Evaluation of the Autoregressive

Model, discusses the validity of the autoregressive model in view of some of

vi



the research literature which has criticized its use. Section 6, Concluding
Remarks, points out some of the advantages and disadvantages inherent in using

stochastic hydrologic models.

This presentation focuses on the stochastic models of the hydrologic
processes and avoids discussing the problems associated with modeling
socio-economic demands on water resource projects which are an integral part
of identifying drought. This approach is taken to simplify the general
presentation of stochastic models and because the stochastic models of the
socio-economic processes are of less interest to the hydrologist.
Consequently, the general assumption is made that the demands on the water
resource system are known and that the primary concern is with the stochastic
modeling of the inputs (streamflow, rainfall, groundwater storage, etc.) to

the water resource system.

Given that the discussion is focused on the stochastic model of the
hydrologic process, the question is how do stochastic models differ from the
models that the hydrologist usually employs in practice? As will be restated
throughout the discussion, the probability models currently used to perform
flood frequency analysis can be extended with a few additional concepts to

develop models for the analysis of droughts.






Section 1

Drought Identification

1.1 Drought Definition

A major problem in analyzing droughts is separating their occurrence from
the hydrologic record, i.e., defining their occurrence. The difficulty stems
from the fact that drought occurrence depends on the interaction between the
natural occurrence of water (hydrometeorologic factors) and the intended use

of water (operational use).

As an example of this difficulty, consider the perception of drought from
the viewpoints of the meteorologist, agriculturist and the hydrologist. The
meteorologist views drought as below normal precipitation in a region; the
agriculturist, as a soil moisture deficit during the growing season, the

hydrologist, as below normal streamflow.

Even within each of these disciplines, the perception of drought varies.
Consider the regional variability of meteorologic drought. Dracup et. al.
(1980) report drought periods are considered to occur after six rainless days
in Bali, and after two rainless years in Libya. The soil moisture deficit
which corresponds to agricultural drought is a function of crop type as well
as meteorologic conditions. The intended use of the water is a critical
factor in hydrologic drought. As Beard and Kubik (1972) point out, streamflows
which are considerably below normal for short periods (intense droughts of
short duration) may be very significant in areas where demand is a small

fraction of the normal supply but of little significance where ample storage



is present. On the other hand, long periods of slightly below average
streamflow (long duration of low intensity) may be significant to uses which

depend on storage but of little significance to small fraction users.

Thus, drought definition depends strongly on the particular focus of the

analysis. A single characterization of this phenomenon is not possible.

1.2 Drought Analysis Tasks

In view of the different perceptions of drought, it is probably contentious
to propose a general set of tasks to be followed in drought analysis. However,
as a general point of discussion, the tasks proposed by Dracup et. al. (1980)
are general enough to be used by all the disciplines mentioned and a good
starting point. The following is a summary of the major points described in

their article.

Drought analysis is divided among four tasks. The first task is to
determine the nature of the water deficit. The water deficit refers to the
choice of analyzing either precipitation, soil moisture or streamflow. Of
course, a combined approach in drought analysis could be taken where all these
phenomena are considered. 1In this presentation, a distinction is made between
the cause of drought (precipitation) and the impacts due to drought (soil
moisture or streamflow). For hydrologists/planners, the primary interest is
in impacts. For that reason, the analysis is restricted to an individual
deficit such as streamflow. However, either the combined or individual

approach is valid.

The second task is to identify the integral period of time for the



analysis. The integral period of time is the time increment; hour, day, month,
season, year, etc., over which the hydrologic data is averaged in the drought
analysis, and is one of the two factors which determine the number of drought
events in the hydrologic record (the truncation level is the other factor).

An obvious effect of increasing the integral period length is the corresponding
loss of information about the hydrologic process. For example, seasonal flows
which are successively lower or higher than normal are not necessarily

recognized when employing an annual integral period in the analysis.

The choice of the integral period distinguishes between the generally
accepted definitions of extreme streamflow values, high-flows and floods on
the higher end of the streamflow spectrum and droughts and low-flows on the

lower end of the spectrum.

Low-flows and floods, are generally considered to be instantaneous
measures of streamflow. For example, a flood is described in terms of a peak
discharge, say the 100-year flood. The 100-year flood's peak discharge has a
one percent chance of being equaled or exceeded in any given year. The term
"one percent chance" is a probabilistic term which will be fully discussed in
Section 2. Low flows are usually averaged over a number of days. Even though
this is not technically an instantaneous measure, low-flows were grouped with
floods since they are both analyzed in a statistically similar manner. For
example, a common indicator of a low-flow event is the Qio (the seven-
day ten-year, low—-flow). By definition, there is a ten percent chance that
the mean daily flow volume for seven consecutive days will be less than the
Q:O in any one year. On the other hand, high flows and droughts are
measures of streamflow volume which are recorded on a time interval of months

or years.



A third task is to establish the truncation level which is employed to
distinguish droughts from other events in the hydrologic record. The
truncation level reflects the socio-economic demands on the available water
supply. For example, the mean annual streamflow (or some fraction of the
mean) might be used to represent the expected demand of a muncipality on the
available streamflow (see Figure 1.1). However, the demand need not be
constant and can be represented by some time varying truncation level (See
Figure 1.1). The assumption is made for the remainder of the discussion
(unless it is stated to the contrary) that the truncation level is known, and

for the sake of simplifying the discussion, is a constant value.

As can be seen from Figure 1.1, periods of flow below the truncation level
are identified as drought or low-flow periods and flows above the truncation
level as periods of high flow or flood periods. 1In fact, the separation (and
symmetry) between the definitions of low-flow, drought, high-flow and flood
can be seen quite readily in Figure 1.2 by combining the concepts of integral

period and truncation level.

As a final task, a regional analysis approach to the problem is selected.
Limiting the analysis to a single site is generally not feasible since the
hydrologic record at a single site is too short to provide adequate estimates
of drought statistics. The local hydrologic record can be extended in a
regional analysis by considering the interrelationship between records covering
a broad topographical area. The delineation of the study area is based on
either geomorphologic or statistical homogeneity factors. Geomorphologic
factors which delineate an area include topography (mountain ranges are an
obvious factor), local storage (lakes) and soil properties. 1In the statistical

approach, sites are grouped based on similar statistics of the hydrologic
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record. At this time, delineating the areal extent of a drought based on

these methods has not been adequately investigated and is an area of needed

research.

The tasks defined by Dracup et. al. seem reasonable. The most difficult
to apply is regional analysis. Regional analysis in flood studies has been
applied successfully; however, the same cannot be claimed for drought analysis.
In Section 2.5, the problems involved in performing a regional analysis in

drought studies are explored.

In conlcusion, a drought can be identified from a hydrologic record based
on the analysis tasks described. The major problem to be addressed is,
therefore, to build a model of the hydrologic process, say a streamflow model,
to predict, or at least estimate, the potential severity of future droughts,
assuming that the truncation level and integral period are specified. Thus,
the building of a stochastic model of the streamflow process is the desired

end product of the subsequent discussion.

1.3 Summary

Drought occurrence is a function of socio-economic and hydrometeoroclogic
factors. The combination of these factors make the identification and
quantification of drought phenomena a difficult problem. The work done by
Dracup et. al. (1980) has been referenced as a starting point for the
jdentification of drought. Based on this work, a drought is identified in the
hydrologic record based on four analysis tasks. The tasks determine the nature
of the water deficit, the integral period, the truncation level for the

analysis and whether or not regional analysis is to be applied. Consequently,



recognition of the fact that drought is defined in conjunction with socio-

economic considerations, as embedded in these tasks, is a key concept.

Consideration of socio-economic factors are extremely important in
accomplishing the above tasks. However, the inclusion of socio-economic
variables into drought analysis is beyond the scope of this discussion. Thus,
the discussion of stochastic analysis will presume that the first three tasks

have been completed.



Section 2

Stochastic Models Based on Introductory Probability Theory

2.1 Introduction

The purpose of this section is to introduce stochastic models of the
streamflow process by relating them to the probability models used in flood or
low~flow frequency analysis. The advantage to this approach is that hyrolo-
gists often use frequency analysis and it is described in most introductory

hydrology texts.

The discussion begins by delineating the difference between stochastic and
probability models on the one hand and deterministic models on the other hand.
Again, the hydrologist (and the engineer in general) is much more familiar and
comfortable with deterministic models than with stochastic models. The
comparison of these two categories of models is thus useful since it develops
a framework in which the discussion can lead the hydrologist from models which
are more commonly used, deterministic models to models which are less commonly
used, probabilistic models used in frequency analysis, and finally; to models
which are not well understood and used sparingly, stochastic models in drought

analysis.

The probability models in low-flow and flood frequency analysis are related
to streamflow stochastic models by recognizing that the former are models of
independent random variables and the latter are models of dependent random
variables. The relationship exists because even though the mathematical theory
for independent random variables is much simpler to understand than that for

dependent random variables, concepts are involved which are common to both



theories. For example, the concepts of probability or exceedance frequency,
estimation and probability distributions are necesary in describing either
independent or dependent random variables. Consequently, a detailed discussion
of probability models for independent random variables is included as a

stepping stone to the description of stochastic models.

However, the major difficulty in modeling dependent random variables and,
in turn, developing streamflow stochastic models, is incorporating dependence
between random variables into the mathematical theory. The extension of the
technique for building mathematical models for dependent random variables by
including dependence between random variables is theoretically simple, but

leads to a very difficult estimation problem.

The discussion ends by describing how "time series'" analysis uses
regression techniques to solve the difficult estimation problem associated
with modeling dependent random variables. The final step of including
dependence into the relationship between random variables by regression methods

is the essential concept necessary to build a stochastic streamflow model.

2.2 Stochastic vs. Deterministic Models

Stochastic and deterministic models are used extensively in water resources
engineering. Although our primary interest focuses on stochastic modeling, it
is instructive to examine how the two approaches differ by means of an example.
Consider the problem of designing a system of reservoirs that is needed to
meet the water supply requirements of a growing city. 1In order to estimate
the required storage capacity of the reservoir system, the estimates of the
future inflows to and demands on the reservoir system have to be estimated for
the system's operating life.

10



Obviously, estimating the future inflows and demands for the reservoir
system is a rather difficult problem. Our primary interest focuses on being
able to predict the likely inflows. As previously explained in Section 1.3

the socio-economic aspects are beyond the scope of this discussion.

A possible means of determining future inflows (only theoretically
possible) would be to create a mathematical model, based on the fundamental
laws of classical physics, which simulates future weather conditions. The
results of the model prediction coupled with a model which simulates the
movement of precipitation through the earth's hydrologic cycle (a watershed
model) is then used to predict future streamflows. Unfortunately, the present
day technology does not exist to produce accurate long-term weather projections
because of the complexity of the earth's atmospheric processes. Currently the
best physical models of the atmosphere can make predictions on the order of a
few days. However, if this type of model existed, then the meteorologic
conditions and thus the inflows, to the reservoir over its economic life would
be predicted a-priori (i.e., predicted before it is observed). This type of

reservoir inflow model is deterministic. A deterministic model attempts to

predict the value of some variable, in this case streamflow, before the

variable can be observed.

Deterministic models of reservoir operations or watershed dynamics are
commonly applied in water resources engineering. For example, given the
future inflows to a reservoir system and the operating characteristics of the
system, the resulting reservoir outflows can be predicted a-priori with a

reservoir simulation model.

Since prediction of future streamflows by deterministic methods is an

11



extremely complex task, simplifying assumptions must be made to estimate the
potential inflows to a reservoir system. A common approach is to presume that
the future inflows are identical to the past inflows. A basic difficulty with
this approach is that it is highly unlikely that the sequence of observed flows
will be repeated in the future. An alternative to this approach is to assume
that the past record flows are observations of a random or stochastic process.
A random process is one in which the value of future occurrences (lets say
streamflow) cannot be predicted with certainty. If the underlying probability
laws governing the random process can be identified, then the probable inflows
to the reservoir system might be estimated (a more in depth discussion of
random variables and their corresponding probability laws is given in
subsequent sections). This approach has the advantage over the more
traditional approach in that the future sequences of inflow to the reservoir
are not assumed to be identical to the historic flow sequence; and also, has
the advantage of being a great deal simpler than the deterministic model

alternative.

Of course, a price has been paid in viewing the streamflow process as a
random process. First, a means for inferring the underlying probability law,
or equivalently, developing a stochastic model, governing the streamflow
process must be developed. Second, the stochastic model of the streamflow
process is not able to predict future streamflow, but only the relative

likelihood that future streamflows will take on certain values.

Consequently, the difference between deterministic and stochastic models
is that the predictions of a deterministic model are in terms of a single value
(e.g., the streamflow volume next year will be a 1000 acre-feet) whereas

prediction of a stochastic model are in terms of the relative likelihood that

12



streamflow will take on certain valves (e.g.,there is a ninety percent chance

that next years streamflow volume will exceed 1000 acre-feet).

The engineer is much more familiar with the deterministic than the
stochastic approach. This may lead to the misconception that the deterministic
approach is superior. This certainly is not true in general. For example,
the accepted view of nature in the science of gquantum mechanics is decidedly
stochastic. 1In the water resource sciences, there are advocates of both

approaches.

Stochastic models in water resources engineering are used to simulate
processes which can be categorized as independent random variables or dependent
random variables. 1In the case of streamflow analysis, annual floods and
low-flows are usually assumed to be independent random variables. Processes
represented by independent random variables are independent of any other
process. For example, if the probability that the peak streamflow equals or
exceed a certain value in any given year is independent of conditions of the
previous years, or any other factor related to streamflow behavior, then the

peak annual streamflow can be considered an independent random variable.

Processes that are represented by dependent random variables may be related
to a number of factors. For example, if in a previous month the total
streamflow volume is below normal then there is a good chance that the current
month's streamflow will also be less than normal. The reason for this is that
the available groundwater storage is a major factor in maintaining streamflow.
Consequently, if the groundwater levels are depressed causing below normal
streamflow in a previous month, it is quite likely that these groundwater

levels will not recover in time to produce normal streamflow in the current

13



month. Consequently, monthly streamflows might be characterized by a random
variable whose value is dependent (or conditional) on the previous month's
value. Of course, this type of dependence is extremely important because
successive monthly volumes below normal or below the truncation level can

cause a drought,

2.3 Independent Random Variables

2.3.1 Probability

The concept of probability is thoroughly discussed in numerous books on
probability and statistics (for example, Benjamin and Cornell, 1970). For the
purpose of this discussion, probability is associated with observation
frequency. For example, consider that peak annual streamflows are the
obeservations of an independent random variable. After an extremely long
period (longer than would be normally available from historic streamflow
records), an estimate is made of the frequency with which streamflow peaks
have certain values. In particular, lets say, that fifty percent of the
observed streamflow peaks were greater than 1,000 c¢fs. Thus, there is the
temptation to claim that the probability is 0.5 that an observed peak annual
streamflow will be greater than 1,000 c¢fs. Equivalent statements would be
that a flow of 1,000 cfs has an exceedance frequency of 50 percent, or that on

the average one out of every two peak annual flows will exceed 1,000 cfs.

By convention the probability that an observation of a random variable
will take on a value between its maximum and minimum values is one. Thus the
probability that a random variable, X, is greater than a certain value, x, |is

equal to one minus that value. The mathematical notation for this is:

14



P [X > x] 1-P [X £ x] (2.1)

where: P [X > x]

exceedance probability

P [X £ x]

nonexceedance probability

Technically speaking, unless the streamflow record is infinitely long, the
observation frequency is only an estimate of the true probability. The
estimation of probabilities associated with the values of random variables is
a significant problem for the water resources engineer. (Unfortunately, the
classic statistical techniques used to determine the reliability of probability
estimates are of little use to the water resources engineer because hydrologic
records are relatively short, on the order of 50 years.) Consequently,
observations frequencies estimated from these short records may not give very
good probability estimates. The problem of estimation is thus extremely

important and will be continually emphasized throughout this discussion.

2.3.2 Probability Model Inference

‘A probability model (whether or not it pertains to independent or dependent
random variabies) defines the probability that a random variable will be
observed with values between certain limits. Probability laws are usually
described by a mathematical function which in this discussion is referred to
as a probability or stochastic model. A major step in the analysis of random

processes is to select the appropriate probability model.
There are two major tasks involved in selecting a probability model for an
independent random variable. The first task is to estimate probabilities

based on observation. The second task is to determine the probability model's
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functional form based on the probabilities estimated in task one.

The methodology used for probability estimation is best described by an
example. Consider the observations of annual streamflow volumes of the West
Branch of the Oswegatchie River near Harrisville, New York shown in Table 2.1.
The volumes are grouped in increasing intervals of 50 acre-feet, graphically
represented as a histogram (Figure 2.1). The fraction of the total number of
observations within each interval is an estimate of the random variable's
occurrence frequency. The estimation methodology associates the occurrence
frequency with the probability that an observation of the random variable,
streamflow volume, will occur in any interval. 1In other words, the probability
that a random variable occurs in a given interval is equal to the ratio of the
expected number of observations in the interval to the total number of
observations. Thus, probabilities are estimated from the observed occurrence
frequencies. 1In the example, there are 7 volumes out of the total 65 between
250 and 300 acre-feet, giving an observation frequency or an estimate of the
probability as 0.107 (number of observations/total number of observations).
Another means of expressing this estimate is that there is a 10.7 percent
estimated probability (or chance) that an observation occurs between 250 and

300 acre-feet.

Another convenient representation of the observed frequencies is the

cumulative frequency distribution. This distribution is calculated by

successively adding the frequency distribution values from the lowest interval
to the interval of interest. 1In the example, the occurrence frequencies 0.046,
0.107, 0.276 add to the cumulative frequency of .429 at 350 acre-feet. An
alternative expression for this estimate is that there is an estimated 42.9

percent chance that an observation will be less than 350 acre-feet.
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TABLE 2.1
ANNUAL STREAMFLOW VOLUMES
of the West Branch of the
Oswegatchie River, Harrisville, N,y

NY.
Volume Volume

Year (acre ft) , Year (acre ft)
1917 338.1 1950 336.7
1918 392.3 1951 392.4
1919 406.2 1952 307.1
1920 350.7 1953 325.8
1621 361.3 1954 442 .3
1922 414.1 1955 406.2
1923 255.6 1956 333.3
1924 4Q9.4 1957 300.4
1925 400.3 1958 363.4
1926 449.6 1959 353.3
1927 348.3 1960 413.8
1928 534.3 1961 286.7
1929, 463.3 1962 354.7
1930 453.2 1963 319.2
1931 249.8 1964 270.7
1932 415.3 1965 246.9
1933 354.7 1966 320.8
1934 261.3 1967 299.8
1935 363.4 1968 307.1
1936 326.7 1969 409.7
1937 421.3 1970 310.6
1938 401.1 1971 406.2
1939 313.5 1972 396.3
1940 288.2 1973 451.0
1941 241.1 1974 427.8
1942 335.9 1975 372.8
1943 432.3 1976 564.1
1944 315.8 1977 442.3
1945 368.5 1978 463.3
1946 380.1 1979 411.3
1947 604.5 1980 336.8
1948 341.2 1981 520.5
1949 334.5
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Estimating probabilities in this manner has some drawbacks. First, the
choice of intervals (in this example 50 acre-feet) tends to be arbitrary.
Second, the method constrains the occurrence probability of the random variable
between the highest and lowest observations. This is an unfortunate constraint
for the hydrologist who can never be sure that future observations will not
exceed historical observations. This can be seen by inspection of the
cumulative frequency distribution. By definition, the probability that the
event occurs in an interval ranges from zero (no observation of the event) to
one (absolute certainty of an observation). Consequently, the method estimates
there is one hundred percent probability that an observation is between 200 and

650 acre-feet.

To avoid the interval problem, plotting positions are assigned to each
observation (see Haan, 1977, pg. 133). The plotting positions are calculated
by first arranging the flows from highest to lowest and assigning a rank to
each observation (see Table 2.2). An estimate of the cumulative probability
at each point is calculated using a plotting position formula, such as the

Weibull formula:

m
PIX<x1 =001 (2.2

where: xi = observed event

X = random variable
m = rank
N = number of events

The factor N+l is employed to allow for a finite probability that a flow occurs

outside the observed flows.
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Table 2.2
Plotting Position for
Annual Flows of the
West Branch of the Oswegatchie River,
Harrisville, N.Y.

Rank Year Annual % Exceedence Rank  Year Annual % Exceedence

Flow Frequency Flow Frequency
1 1947 604.5 1.5 34 1921  361.3 51.5
2 1976 564.1 3.0 35 1962  354.7 53.0
3 1928 534.3 4.6 36 1933  354.7 54,6
4 1981 520.5 6.1 37 1959  353.3 56.1
5 1978 463.3 7.6 38 1920 350.7 57.6
6 1929 463.3 9.1 39 1927  348.3 59.1
7 1930 453.2 10.6: 40 1948  341.2 60.1
8 1973 451.0 12.1 41 1917  338.1 62.1
9 1926 449.6 13.6 42 1980 336.8 63.6
10 1954 442.,3 15.2 43 1950 336.7 65.2
11 1977 442.,3 16.7 44 1942 335.9 66.7
12 1943 432.3 18.2 45 1949  334.5 68.2
13 1974 427.8 19.7 46 1956  333.3 69.7
14 1937 421.3 21.2 47 1936  326.7 71.2
15 1932 415.3 22.7 48 1953  325.8 72.7
16 1922 414,1 24.2 49 1966  320.8 74,2
17 1960 413.8 25.7 50 1963  319.2 75.7
18 1979 411.3 27.3 51 1944  315.8 772.3
19 1969 409.7 28.8 52 1939  313.5 78.8
20 1924 409.4 30.3 53 1970 310.6 80.3
21 1955 406.2 31.8 54 1968  307.1 81.8
22 1971 406.,2 33.3 55 1952  307.1 83.3
23 1919 406.2 34.9 56 1957 300.4 84,9
24 1938 401.1 36.4 57 1967  299.8 86.4
25 1925 400.3 37.9 58 1940  288.2 87.9
26 1972 496.3 39.4 59 1961  286.7 89.4
27 1951 392.4 40,9 60 1964  270.7 90.1
28 1918 392.3 42 .4 61 1934 261.3 92.4
29 1946 380.1 43,9 62 1923  255.6 93.9
30 1975 372.8 45,5 63 1931  249.8 95.5
31 1945 368.5 47.0 64 1965 246.9 97.0
32 1935 363.4 48,5 65 1941 241.1 98.5

33 1958 363.4 50.0
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The plotting position method estimates a cumulative probability for each
data point. The theoretical justification for the plotting position approach
is derived from the theory of order statistics, which is beyond the scope of

this presentation (see Gumbel, 1958, for further reading).

The second task is to choose a probability model that corresponds to the
probabilities estimated from the observed data. Probability models are
generally represented in either of two functional forms. One form is the
probability density function (PDF) (see Benjamin and Cornell, pg. 70, 1977).
The PDF is the model proposed for comparison with the observed histogram. A
second form is the cumulative distribution function (CDF) for both the case of
discrete and continuous functions. The CDF is the model proposed for compari-
son with the observed cumulative frequency distribution. Although hydrologists
generally deal with discrete data, the continuous PDF and CDF are most often
used as probability models since streamflow or rainfall is thought of as a
continuous process. The CDF is related to the cumulative area under the PDF,
analagous to the relationship between the histogram and cumulative frequency

distribution. Mathematically, this is expressed by the integral relationship:

i
= s -
FX(x) P [X < xi] _/. fx(x)dx (2.3)

O3

where fx(x) is the PDF and Fx(x) the CDF, and minus infinity — = is taken
as the lowest bound for the random variable. This relationship is graphically
demonstrated in Figure 2.2, and P [X £ xi] is read as the probability that
the random variable X is less than or equal to xi, the upper bound on the

integral.

The total probability of observing a random variable between its maximum

and minimum limits is, by convention, equal to one. Taking plus and minus
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infinity as the limits of the random variable, results in the integral

relationship:
[><]
Plw<x<K®] =1 = / fX(x)dx
-3

thus the area under the PDF is always unity. Note that in Figure 2.2 the
cumulative probabilities approach zero and one, leaving a small but non-zero

probability for any value of the random variable.

The method used to compare the probability model and the observed data is
best illustrated by an example. Assume that the data for the West Branch of

the Oswegatchie River is to be modeled by the normal distribution which is

given by:
2
1 (—1/2)(x—uX)

fX(x) ] expl\ S (2.4)

X )

X
where: Uy = mean or average value of PDF

o2 = variance of the PDF

X

which are parameters of the distribution. (The normal distribution is the most
well known distribution in the statistical and physical sciences. Tabulated
values of the normal PDF and CDF may be found in most statistical texts,
including the references already mentioned.) A comparison of the proposed
model and the observed data is commonly made in either of two ways. One way

is to compare the observed histogram and the theoretical or model histogram
predicted by the PDF. The model histogram frequencies were calculated for

each interval by computing the integral:

22



p(x)

CUMULATIVE AREA UNDER
/ PDF IS EQUAL TO ONE

PROBAB!UTY DENSITY FUNCTION { PDF }

P{x} = EXCEEDANCE PROBABILITY

P(x)

{O0f———m e =

AREA UNDER PDF TO POINT B
AREA UNDER PDF TO POINT A

R

A (o) B X

CUMULATIVE DISTRIBUTION FUNCTION

Figure 2.2 RELATIONSHIP BETWEEN PROBABILITY DENSITY FUNCTION
AND CUMULATIVE DISTRIBUTION FUNCTION

23



i+l

£ X s = /' .

P [xi £ X< xi+1] fx(x)dx (2.5)
X,

i

The observed probabilities or frequencies are then normalized by dividing by

the interval length (50 acre-feet) so that the area under the histogram is

equal to one. From the comparison, a judgment can be made as to the goodness

of fit of the model and observed histograms (Figure 2.1).

Although the above approach is viable, it is cumbersome, and also suffers
from the interval problem mentioned earlier. A second more convenient approach
is to compare the CDF with the observed cumulative frequency distribution

(Figure 2.3).

The comparison is facilitated by use of probability paper, which is
specific to a particular CDF (see Haan, pg. 128, 1977). The example data are
plotted on normal probability paper in Figure 2.4, for demonstration purposes.
If the proposed probability model fits the data, then the data will lie close

to a straight line on the probability paper.

The comparisons made in Figures 2.1, 2.3 and 2.4 indicate that the proposed
model fits the data reasonably well in the central portion of the distribution
but deviates in the "tails"™ of the distribution (e.g., the regions in the
extreme portions of the distribution, 200 to 300 and 550 to 650 acre-feet).
These deviations from the observed data probably indicate that the underlying
distribution is skewed. A skewed distribution having a preponderant tail, is

not symmetrical like the normal distribution.

Since most streamflows have a lower bound of zero, their frequency
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distribution are necessarily asymmetrical. 1In some cases, streams are best
treated as having a non-zero lower limit due to the existence of channel losses
or external sources (e.g., spring flow). The considerations involved in
selecting a frequency distribution appropriate for analyzing streamflows in
drought analysis are discussed in Section 3.2., "Selection of the Marginal

Distribution."

In the above discussion, terms such as "acceptable difference” or "close"
were subjectively offered as criteria for accepting or rejecting the proposed
model. The method can be made more objective by employing statistical
"goodness of fit tests" (see Haan, pg. 174, 1977). However, there are problems
with these tests when hydrologic data is involved. Criteria that might be

more appropriately used for analysis of droughts are discussed in Section 3.

2.3.3 Probability Model Moments

The probability models shape indicates important properties of the random
process. For example, the interest might focus on the central tendency or
spread of values that can be expected. A means of characterizing these
properties are the moments of the PDF. The moments which are of greatest

interest are the mean, variance and skew coefficients.

The mean value, also referred to as expected value, the average value or
the first moment, measures the central tendency value of the random variable
X. The variance (the second central moment of the PDF) measures the width or
the spread of squared values about the mean. The square root of the variance
is the standard deviation. The skew coefficient (proportional to the third

central moment) is a measure of the asymmetry of the PDF about the mean value.
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The normal distribution has a skew coefficient of zero, being symmetrical
about the mean. A distribution which has a pronounced tail to the right of

the mean has a positive skew and to the left a negative skew (see Figure 2.5).

Each of these moments may be calculated from the PDF as follows:

u =/ X€_(x)dx (2.6)

8

(x - uX)zfx(x)dx (2.7)

Q
4
N
It
g~—s

Yy = 7 (x - ux)afx(x)dx /(ox>3 (2.8)

where; ux = mean

ox = standard deviation
o2 = variance

x =

Yx = skew

In the most general case, the moments of the PDF can vary with time.
However, this type of model leads to some rather difficult estimation problems.
To simplify this problem and for practical considerations, the moments are
assumed constant for frequency analysis. For a further discussion of this
point, see Section 2.4.1 on time series analysis. Given that the moments are
constant, the problem is to estimate these parameters from observations of the

random variable (i.e., the data, as discussed in the next section).

2.3.4 Moment Estimators

A large body of statistical theory is devoted to the estimation of model
parameters from observations. 1In this theory, a great deal of effort is spent

defining the "best" estimators. Our discussion is very limited in this regard
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and presents only formulas for the sample estimates of distribution moments.
Note that there are a number of methods available for estimation, but this

approach is the most prevalent because it is easy to apply.

The moment estimating formulas for the estimation of the mean, variance
and skew coefficient (in contrast to the true population values which were

discussed previously) are:

1 N
m_x = ﬁ 2 Xi (2.9)
i=1
N R 1/ 2
sy = 3 [(xi - mX) /(N - 1)] (2.10)
i=1"1
N 3
gg = N I (x; - mx)a/(N - DN - 2)8, (2.11)
i=1
where: mX = sample mean
Sy = sample standard deviation
gX = sample skew coefficient
X = random variable
xi = ith observation
N = number of observation

The formulas given are unbiased, i.e., the expected value of the estimating

equation is equal to the "true" value of the moments.

The numbers of observations play an important role in evaluating the
reliability of the sample estimates. Consider for example the effecﬁ of the
number of observations, N on the sample mean. The sample mean is a sum of
random variables, x, and thus is a random variable, with its own mean,

standard deviation, skew and other moments. The standard deviation of the
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sample mean is related to the standard deviation of the observations as

(remembering that X is an independently distributed random variable):

Gmx = aX/V/ﬁ (2.12)

where: op = standard deviation of the mean
X

Since the larger the standard deviation the greater the spread in the PDF and
the greater the uncertainty in evaluating the random variable, the uncertainty
in evaluating the sample mean decreases as the inverse of the square root of
the number of observations. In water resources, the record lengths at a
single station range on the order of 20 to 100 years. A rough calculation
demonstrating the percent improvement in the estimate of the sample mean over

this range is approximately:

[+
_™X N=100 - /20 - .45 (2.13)

o 100
Ty N=20

Consequently, if the estimates based on only twenty years are viewed with
skepticism, then 100 years of data improves our view of the estimate by 45

percent.

2.4 Dependent Random Variables

2.4.1 Time Series Analysis

As mentioned previously, sequences of streamflow volumes (monthly, annual,
etc.) may be modeled as a stochastic process. The inference of the probability
model for stochastic processes is accomplished by techniques available in time

series analysis. The term time series is an apt description for streamflow

which is a sequence of observations in time. However, the term time series is
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somewhat of a misnomer as a general description for stochastic processes. For
example, the variation of some type of soil property, such as porosity, width
distance may be modeled as a stochastic process. Techniques available in time
series analysis can be used to characterize these observations even though

they are a sequence in space rather than time.

At first glance, an attempt to analyze a time series might seem hopeless
due to its chaotic nature. To simplify this analysis, we can take an
operational view of the time series. The operational view assumes that the
time series can be separated into deterministic and random components. The
deterministic components are trends, periodicities and spurious events (see
Figure 2.6). These components may result from identifiable physical phenomena.
The random component is subtracted from the original time series. This random
component may reflect an inherent property of the process or in the limitations

of our physical model.

A trend is manifested in a long-term change in a property of the time
series. A physical basis for a hydrologic trend is an identifiable long-term
climatic change. An example of a hydrologic trend is a consistent increase
with time of a stream's mean annual flow. Another example would be the onset
of an ice age, possibly caused by a long-term decrease in average global

temperature or increase in precipitation or a combination of both.

Trends in streamflow are difficult to identify since their occurrence may
be due to the scale of observation being employed. For example, consider the
trend free trace of a normal independent process generated by a numerical
procedure (Figure 2.7). On the local scale shown, an argument might be made

for the identification of a trend in the data. However, this conclusion based
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on the local scale of observation is incorrect since by construction a trend

is not present.

Generally, trends are characterized by a linear or polynomial function
(e.g., quadratic, cubic, etc.). There are statistical tests available for
testing which of these models are adequate in describing the trend (ref. Draper
and Smith, 1966). However, the water resources engineer's observation scale
(50 years) is necessarily local due to the short-term nature of hydrologic
records. Statistical tests only signify the reasonableness of the trend model
on this scale. The extrapolation of an identified trend much beyond the

observed record is difficult at best.

Periodicities are the identifiable cyclical aspects of a time series.
Unlike trends, some periodicities are easily recognizable. For example, the
annual cycle as it effects precipitation or streamflow (or weather patterns in

general) are obvious periodic components in a natural time series.

The recognizable periodicities in a natural time series are readily added
to stochastic models. For example, monthly or seasonal periodic fluctuations
in mean streamflow volumes can be modeled (see Salas et.al. chapters 3 and 4),
although inclusion of the periodicities makes inference of the model parameters
more difficult. However, attempts to identify periodicities that exceed the
annual cycle (e.g. identifying the twenty year drought) fall into the same
difficulties as identifying long term trends. In general, the mathematical
techniques in spectral analysis used to identify periodicities (Haan, 1977, or
Jenkins and Watt, 1968) are beyond the scope of this presentation. The
assumption is made that any periodicities identifiable in the hydrologic

record are easily identifiable (annual cycle at most). The periodicities can

35



then be subtracted from the time series to simplify the analysis.

A spurious event or an outlier is a phenomena that is completely uncharac-
teristic of the time series record. A spurious event in the hydrologic record
could be caused by a catastrophic event, such as a volcanic eruption. There
has been speculation that the additional volcanic dust emitted by a volcano

has a direct effect on atmospheric processes and thus on the hydrologic record.

In classic statistics, outliers are identified with measurement errors.
Certainly, if a stream gage is not operating properly, then the engineer has
good reason to discard data. Otherwise, the categorization of a datum as an

outlier is risky (as well as controversial) business.

When all the deterministic components of a time series are removed; the
trends, periodicities and spurious events, what remains is the random
phenomena. 1In general, and in the case of streamflow volumes, the random
phenomena usually demonstrates stochastic dependence. That is, the random

phenomenda needs to be treated as a dependent random variable.

In general, time series analysis attempts to characterize a sequence of
observations in two steps. First, the trends, periodicities and spurious
events are identified and subtracted from the time series. Second, the

probability model is postulated for the remaining random phenomena.

2.4.2 Stationarity and Ergodicity

Although the operational view of a time series is useful for analysis

purposes, a more general view is to use a probability density function (PDF)
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to model the time series. In the previous section, the moments of the PDF for
an independent random variable were assumed to be constant. However, these
moments could be allowed to vary with time. For example, a trend might be
manifested in the increase with time of the mean annual flow (the first moment

of the streamflow PDF).

Irrespective of the analysis point of view, long-term trends or periodici-
ties are not included in stochastic models of streamflow. The reason for this
is that extrapolation of trends or periodicities over the design life of a
project (50 years) based on a record of 50 years involves too much uncertainty.
Thus, for the purpose of predicting drought, or any long-term prediction
involving streamflow, the assumption is made that streamflow sequences are
free of trends or long-term periodicities (periodicities greater than the

annual cycle).

The statistical equivalent to this view is to assume stationarity and
ergodicity. Stationarity requires that all moments of the PDF are constant,
such as the mean, standard deviation, skew etc. This assumption is actually
too general for statistical analysis in water resources. The condition is
usually relaxed to include only certain moments of the PDF (in our case only

the first three moments). This is termed weak stationarity.

Ergodicity states that a property of a stochastic process derived from a
single realization is the same as that derived from a number of realizations.
As an example, consider three separate traces of hypothetical streamflows
shown in Figure 2.8. Ergodicity requires that the mean for a single
realization be the same as that determined from the observations across a

group of realizations (A, B, C, etec). Of course, this property could be
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required for all moments of the probability distribution, but as in the case

of stationarity, the requirement is only for the first three moments.

Given the stationary and ergodic assumptions, the problem of inferring the
probability model for a time series has been reduced to inferring a PDF with
constant moments. The stationary and ergodic assumptions may appear severe.
However, given the current state of knowledge, they are necessary simplifying

assumptions.

2.4.3 Probability Models for Dependent Random Variables

In Section 2.3, methods were given for modeling independent random
variables. However, to more completely describe a random process, the concept

of dependence must be incorporated into models of random variables.

Two variables X and Y are dependent if the likelihood of X taking on values
within a certain range are dependent on Y taking on values within a certain
range, and vice-versa. X and Y may be observations of two completely different
variables (streamflow and air temperature) or may relate current and previous
observations of the same variables (the current and previous months streamflow
volume). The dependence between observations of the same variable is termed
serial dependence. In this regard, dependent and independent random variables
differ in that if X and Y are independent then the likely values of one
variable do not depend on likely values of the other variables. However, the
independent and dependent cases are similar in that values of a random
variable cannot be predicted prior to their observation and models of random

variable are based on observation frequency.
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Although the stationary and ergodic assumptions result in a major simpli-
fication in modeling random processes, as will be seen in later sections, the
modeling of a dependent random variable is still too complicated a problem.
The purpose of this section is to briefly review traditional concepts
pertaining to dependent random variables (this material may be found in any

texts on probability and statistiecs).

The joint behavior or the relationship between random variables is defined
by a joint probability law, functionally expressed by a joint CDF or PDF. 1In
the present discussion, the examination of the joint behavior or dependence of
random variables is relevant to both single stream gage analysis and regional
analysis. Streamflow observations at a single gage usually demonstrate serial
dependence, e.g., there is a relationship between current and previously
observed flows. 1In this case, the joint behavior of interest is between

different observations of the same random variable.

The purpose of regional analysis is to establish a relationship between
observations at different stream gages as well as the serial dependence at each
gage. These relationships are then used to improve estimates of model para-
meters. The relationships needed are the joint behavior of streamflows at a

number of gages, modeled as the joint behavior of a number of random variables.

The probability of joint occurrence of two random variables is given as

(Benjamin and Cornell, pg. 91):

X, s
yl

i
P [X £ X, and Y £ yi] =/ / fX,Y(x,y)dx dy (2.14)

—C0 -

where: X,Y = random variable

fX Y(x,y) = joint probability density function
’
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The probability computation is equivalent to determining the area under a
two-dimensional distribution between the limits specified. As in the case of
a single random variable the total probability must be equal to one and the

area under the PDF must be equal to one.

In some instances, the behavior of X is of interest over certain ranges
of the variable Y (or vice-versa). As an example, consider the joint
behavior of annual streamflow volume and well pumping rates. Annual
streamflow volumes and pumping rates are related by the effect pumping rates
have on aquifer levels. Aquifer levels in turn are the primary source of
long-term baseflow. The pumping rates may vary randomly during the year in
response to varying domestic and industrial demand. However, the pumping
rates vary only between certain limits, constrained by the pump capacities.
An average probable annual streamflow volume may be of interest over the full

range of pumping rates.

This average behavior is determined by integrating the joint PDF over the
required range of Y (pumping rates) to determine the probability distribution
of X (annual streamflow volumes). The distribution of X calculated in this
way is the marginal distribution which determines the behavior of X over the

total range of Y (Benjamin and Cornell, pg. 92, 1977):

fX(x) Zz fX’Y(x,y)dy (2.15)

where: fx(x) = marginal PDF of X

X,
1
FX(xi) =P [X £ xi] = iﬁ fx(x)dx (2.16)

where: FX(x) = cumulative marginal distribution X
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The conditional distribution determines the probability of X having
values between x and x + dx for values of ¥ < y. The conditional PDF is
determined by dividing the joint PDF by the probability that Y < yo over

the total range of X (Benjamin and Cornell, pg. 92, 1977):

© ¥y y
p = / / EXY(x,y')dy' dx =/ fy(y Ydy (2.17)
R > o QN o] —00
_ E(x.¥)
fle(x,y) = b p>0 (2.18)

where: (X,y) = conditional PDF of Xx

fxly
fY(y) = marginal PDF of Y

Division by the probability p is done to renormalize the total conditional
probability to one. The conditional probability of X given a value of ¥<y is
thus:

X,

i
%9 =P [X<x | Y £yl = )/ fX‘Y(x,y)dx (2.19)

1
00

FX]
where: Fxly(x,y) = conditional CDF

The cumulative, conditional and marginal CDF are the n related using a

formula analagous to equation 2.18 as:

P[X £ x and Y £ y] (cumulative)

(conditional) P[X £ x | Y £yl = PIY < 3] (marginal) (2.20)

Knowledge of the conditional or joint PDF for the flow in a particular
stream is of great value in drought analysis. For example, assume that the
annual volume of streamflow is dependent on only the past year's streamflow.
The probability that two consecutive year flows are less then the truncation

level (the demand) is (using equation 2.20):

42



P [X, < x5 and X; < x5] =P [X, < x5 | X, < 5] P [X,; < %41

where: X,, X, annusl flows in consecutive years

the truncation level

%o
(Note the probability that the first years flow is less than the truncation
level is calculated without knowledge of any previous condition in the stream).
The means by which this calculation can be carried out in drought analysis are
fully detailed in Section 4. The important point is to realize that once the
PDF of streamflow process is known, the probability associated with a given

drought can be calculated.

2.4.4 Dependence and Linear Regression Analysis

The inference of the joint PDF for two or more variables or the serial
dependence for a single variable is an extremely difficult problem. The
problem can be appreciated by considering the methodology described in Section
2.4.2 for identifying the PDF of an independent random variable and trying to
extend this method to identifying multivariate distributions (i.e., joint
distributions of two or more variables). Let's consider an example where
paired observations of the random variables X and Y are available. This
example is applicable to the univariate problem where X and Y may be observa-
tions of the same random variable if serial dependence is being investigated
(e.g., X and Y are the current and previous months streamflow) or observations
of two differenct random variables as in the case of regional analysis (e.g.,

X and Y are streamflows at two different gages).

In direct analogy to the method for independent random variables, a two-
dimensional histogram is developed for X and Y and compared to a theoretical

PDF. The agreement between the observed and theoretical distributions

43



determines whether or not the theoretical PDF is an appropriate model.

This is obviously a cumbersome procedure to make inferences on the PDF of
a random process. Furthermore, if more than two variables are involved, the

procedure is too cumbersome to be of practical use.

In practice, this methodology isrnot employed. Instead linear regression
analysis is used to investigate the dependence between random variables. The
purpose of this section is to introduce linear regression analysis and to
describe its relationship to a particular type of joint PDF, the multivariate

normal distribution.

The most common approach (particularly in considering stochastic processes
in water resources engineering) is to presume that the relationship between
random variables or transformations of the random variable is linear. A
transformation is performed because the relationship between variables presents
some special problems. To keep this discussion simple, a discussion of trans-
formations is delayed until Section 3. For the remainder of this discussion,

the relationship between variables is assumed linear.

A linear relationship between any two deterministic or random variables X

and Y is expressed as (see Figure 2.9):
Vi = axj + b (2.21)

observations of the variables Y and X

where: Vi, X3

a the slope of the straight line relationship

b

intercept of the straight line relationship
One method of determining the coefficients of the straight line is to require

that the squared difference between the left and right hand sides of equation
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¢ Observation of vy,
given an observation of x

* Best " fit straight line
from regression

Figure 2.9 LINEAR REGRESSION
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(2.21) be a minimum:

n n
min ¥ R, = ¥ (y, - (ax, + b))® (2.22)
1 . 1 1
=1 i=1

where: n = the total number of paired observations of X and Y
2 .
Ri = the squared residual

It can be shown (Draper and Smith, 1966) that equation (2.23) results in the

following values for the coefficient of the linear regression:

w

a=r = (2.23)
X
b = IﬂY - a.mX (2.24)
where: my my = sample mean of ¥ and X
Sy, Sy = sample standard deviation of Y and X
The sample correlation coefficient can be calculated by: \
n
Y (x, - m)(y, -m)
coxy 1w 2O X i (2.25)
Sy Sy n Sy Sy

where: r = sample correlation coefficient

SX,Y = sample covariance
It can be shown that the sample correlation coefficient has the interesting
property:
-1<rg1 (2.26)
Note that although the above relationships refer to "sample" estimates, X and ¥

need not be random variables to apply the equations of Section 2.3.4
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The sample correlation coefficient indicates the degree of linear associa-
tion between variables X and Y. This can be seen by noting that in equation
(2.23) the slope of the straight line in Figure 2.9 is directly proportional
to the value of r. Consequently, if r = O then knowledge of the value of X is
of no help in estimating Y. As the value of r increases, estimates of value
of Y can be made with greater confidence based on values of X. The correlation
coefficient between streamflows should always be greater than or equal to
zero. However, sample estimates may in fact be less than zero due to sampling
error. Negative values should never be used in an analysis because it is not
physically reasonable. Instead, a possible alternative is to substitute a

value for r based on analysis of streams in the same region.

Regression analysis takes on added significance if the joint probability
density function is multivariate normal. The bivariate normal form for two

random variables X and Y:

e 1 expd —=1 | [T %
X,¥ 2 o, o, (1 - pz)% 2 (1 - p2) %
X Y
(X = u (Y - u) R
- 2p X | = (2.27)
X Y Y
where: Hys My = the mean of the marginal distribution of X or ¥
Oy» Oy = the variance of the marginal distribution of X or Y
P = the correlation coefficient
The correlation coefficient is defined by:
o
- - f dx d
/(x uX)(y uY) X,Y (x,y) dx dy )
p = = — - GX:*" (2.28)
X Y XY
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where: Oy = the covariance of the variable X and ¥

The correlation coefficient is an indicator of the dependence between random
variables X and Y. ©Notice that if p = o then the'joint normal PDF, equation

(2.27) reduces to:

2
X - ug

1
fX,Y T 2w oy © expq - 1/2

Y '

V- ou,\
exp - 1/2 —d—! = £,(%) £,(y) (2.29)
Y

where: fx(x), fY(y) = PDF for independently distributed random variables X,Y

Thus p = 0 corresponds to the condition that X and Y are independently

distributed.

As might be expected from the discussion of regression analysis, there is
a relationship between the sample estimates of the regression and the
parameters of the bivariate normal distribution. This can be seen by noting

two relationships which can be derived from the joint normal PDF:

Y 2

yi = uY + p _°X (xi - ux) + o‘Y\/l—-p X ei (2.30)
% Vi?

xj = My + p ;; (yi - uY) + 2% 1-p~ X ej (2.31)

where: ey, ey = independently distributed normal random variables, mean
zero, variance one

Yi» X3 = joint normally distributed random variables
Taking the conditional expectations of both sides of these equations (noting

that Ele;] = 0, E[ej] = 0):
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E [YIX = xi] =uy + P ;; (Xi - px) (2.32)
%
E [X]Y = yi] =Hy + P ;; (yi - pY) (2.33)

which are linear relations between two variables similar to those shown in
equation (2.21). The relationship between these equations can be specifically

seen by noting the direct correspondence between sample estimates of the

parameters in the regression (p,aY,cX,uy,uX) and the parameters of the
bivariate normal distribution (r,sx,sY,mx,mY). There are many sophisticated

tests available in time series analysis to determine if a set of random
variables has a joint normsl dependency. However, these methods measure

dependence in terms of r, the correlation coefficient of a linear regresson.

This coefficient is a poor indicator of the general stochastic dependence
between two random variables. This can be readily seen by constructing a
relationship between Y and X as quadratic and then trying to fit a linear
relationship between two variables. In this case, the correlation coefficient
certainly would not be equal to one, yet, by construction, there is perfect
quadratic dependence between the two variables. Consequently, caution must be

used in interpreting the correlation coefficient as a measure of dependence.

In summary, the only possible means of correctly specifying the joint
dependence of random variables is by determining the joint PDF. However,
inference of the joint PDF in general is cumbersome if not impossible and thus
regression analysis is used as the primary technique to investigate

dependence, even though it has limitations.
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2.4.5 System Memory, Serial Dependence and the Correlogram

As briefly mentioned in Section 2.3, the physical justification for
modeling streamflow as a dependent random variables is aquifer storage. To
explain this more fully, consider the means by which precipitation results in
streamflow. Water from precipitation appears in streams via two major paths,
either over the land surface as overland flow or beneath the land surface as
base flow. (Note that sometimes the distinction is made between various modes
of water travel beneath the surface. For the purpose of this discussion only
the distinction between overland and base flow is made). The water particles
traveling along these separate paths require different travel times to reach
the stream. This difference results in a significant lag between the time

that overland and base flow is observed in the stream.

Base flow is the direct result of storage in aquifers. It is this storage
and slow release of water by aquifers which allows some streams to continue to
flow in extended periods of no precipitation. Thus, current observations of
streamflow at a given location are effected not only by the current

meteorologic events but also by meteorologic conditions in the past.

The extent of time needed for streamflow to be unaffected by previous
meteorologic events is usually referred to as the "system memory" of the
stream basin. Both watershed physical characteristics and atmospheric
processes are possible factors effecting the magnitude of system memory.
Certainly, aquifer storage has a direct effect on system memory. It has also
been suggested that long-term memory exists in atmospheric processes. This
would then be manifested in streamflow records. The actual atmospheric

processes which are responsible for this effect have not been detailed.
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Consequently, system memory is an indicator of how great the dependence of
a currently observed flow‘is on the past. When a random variable's value is a
function of its own past, the variable is said to exhibit serial dependence.
Ideally, this dependence is described by a joint PDF. However, as explained
in the previous section, regression analysis is generally used, since it is

very difficult to ascertain the joint PDF.

To explore streamflow serial dependence, consider a plot of current
streamflow versus a preceeding time period streamflow (the time or integral
period may be weeks, months, years, etc.), Figure 2.10. Assuming a linear
relationship between concurrent flows the following regression relation can be

developed (Jackson and Fiering, pg. 50, 1971).

(xi - uX) = pl(xiwl - uX) (2.34)
where: X xi_1 = streamflows in the current and preceding years

My = the mean annual flow

Py = lag one serial correlation coefficient

The term lag one refers to the fact that the observations have been lagged one

integral period in the comparison (for example lagged one year).

The memory of streamflow systems is determined by calculating correlation
coefficients for increasing lags. A plot of the correlation coefficient

versus lag is termed a_correlogram (Figure 2.11). 1Ideally, the correlogram

approaches zero as a smoothly decaying function. Correlograms which approach

zero at relatively long lags indicate relatively greater system memory.
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Estimating the number of lags needed to adequately describe the serial
dependence in a stochastic model is a difficult and controversial problem.
The reader interested in a discussion of the statistical techniques used to
identify the appropriate number of lags from correlogram analysis should see
Jackson and Fiering, 1971, pg.67 or Salas et. al. 1980, chapter 4. However,
caution must be used when these statistical techniques indicate a need for an
excessive number of lags (more than two). Caution is needed because there is
some question as to whether or not the "persistence" (or long term memory)
that is indicated by multiple lag models is justifiable or necessary. A
discussion of this controversial point is delayed until Section 5, since the
discussion of lag-one models are only necessary for introductory purposes of

Section 3.

The serial correlation, can be estimated from observed data using the

following formula (Jackson and Fiering, pg. 30, 1971)

N-k N-k N
i Yiak T E%E 1 ox 1oz
i=1 , i=1 i=k+l

¥ ox, x
r, = \ (2.35)
ko Ty N-k 2| °| N N 2| °°®
Ioxgt- ﬁ%i Iox Iox - E%E L%
i=1 ‘ i=1 i=k+1 i=k+1
where: rk = the sample lag k correlation coefficient

As in the estimation of moments, the sample serial correlation coefficient
is a random variable which is subject to sampling variability. The problem of
sampling variability increases with increasing lag (see Figure 2.10). Because
of this, the observed correlograms are not smooth and may go negative. As the
lag increases there are fewer data to cross compare, thus decreasing the
accuracy of the estimate. For a further discussion of this point see Jackson

and Fiering, pg. 67.
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Thus, a method is now available for specifying in general the joint
dependence between sucessive observations. Presuming that the process is
stationary and multivariate normal, then knowledge of the sample mean, standard
deviation and correlogram allows the estimation of the joint PDF. However, as
mentioned in previous sections, this type of probability model may not be
wholly appropriate for modeling streamflows. The reason for this difficulty

is discussed in Sections 3 and 5.

2.5 Regional Analysis

Commonly, streamflow records are either non-existent or of insufficient
length at a location of interest. Regional analysis involves the use of
streamflow records from nearby gaging stations to either extend existing
records or estimate flows where records are non-existent. A major difficulty

is to determine which stations to include in the analysis.

This discussion focuses on the use of regional analysis to extend existing
streamflow records. For a more general discussion of the regional analysis

problem see Haan, pg. 229, 1977.

As discussed in Section 1, the number of stations (or the areal extent) to

include in the analysis may be determined by geomorphologic or statistical

similarity criteria. Traditionally, geomorphologic similarities considered
included watershed physical characteristics such as stream length, stream
slope and drainage area. Riggs (1968) points out that low flows are more
generally affected by subsurface characteristics rather than the surface
characteristics used in traditional regional analysis. Because subsurface

characteristics are difficult to characterize over a wide area, regional
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analysis based on geomorphologic criteria has not yet proved to be effective.

This is an area of ongoing research (Task Committee on Low-Flow Evaluation,

1980).

Extrapolation of Riggs' low-flow analysis conclusions to drought analysis
may be somewhat misleading. As pointed out earlier, low-flow analysis implies
a shorter integral period than drought analysis. Thus, differences between
aquifer characteristics, although important in both low-flow and drought
analysis, probably play a more important role in affecting the "instantaneous"
measure of low-flow, such as the Qio (the seven-day ten-year low flow,
see section 1.2), than in the longer term averages of interest in drought
analysis. However, Riggs' comments are well worth noting. A general
understanding of watershed characteristics, including those altered by man's
activities, is of paramount importance in selection of stations to be included

in a regional analysis.

An alternative approach is to utilize statistical similarity criteria in a
regional analysis. However, statistical similarity criteria have not been
proposed in the literature. One might suspect that stations might be selected
based on length of record, and on the individual statistics of each record,
such as the mean, standard deviation, skew and correlations between stations.

Further research in this area is needed.

Given that criteria were available for selecting stations to include in a
regional analysis, records at these stations could be used to reconstitute
(£fill in missing records) at a particular station by employing some type of
mathematical interpolation procedure. The method of interpolation most

commonly used is linear regression (Draper and Smith, 1966). The technique is
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analagous to the method used to determine the serial correlation of an

individual streamflow record. Assuming that only a single additional station

is used, the relationship between two stations can be expressed.
X, (2.37)

streamflow value to be reconstituted

£
=3
3
g}
¢}
g
1

X, = streamflow record chosen in the analysis

i = streamflow period under consideration

>
g
I

sample standard deviations of X and Y

Ly
w
]

sample cross correlation

The above relationship can be generalized to include more stations in the

regression relation, as follows:

y. =b, x. , +b, X, 4. +b x , + t, (2.37)

streamflows at station j (j=1, 2,...,n) during period i

where: %354

bj = functions of the cross correlation between stations,
determined by regression

n = the number of statiouns

tj; = random error component

For a discussion of the number of stations to include in the regression see

Haan, pg. 230, (1977).

Equation 2.38 can be used to improve estimates of the mean and standard
deviation of the record yi (Matalas and Jacobs (1964), or Fiering (1963)).
More importantly, the linear regression for multiple stations is a model that

can be used to formulate the conditional probabilities of interest in drought
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analysis (a logical extension of Section 2.3.5). The relationships developed
to express serial dependence and the regional relationships in streamflow

records are used in Section 4 to determine these probabilities.

2.6 Summary

The purpose of this section was to relate probability models currently
used in flood and low-flow frequency analysis (models for independent random
variables) to probability models used in modeling streamflow for drought
analysis (models for stochastic processes). This approach was taken because
the hydrologist is familiar with frequency analysis but not familiar with the

techniques or language used in modeling stochastic processes.

Independent random variables and stochastic processes were related by

considering the common problem of inferring a probability model, the

probability density function (PDF), from observation of a random process. As

it turned out, the inference of the independent random variables PDF is
conceptually straight forward if the moments of the PDF are assumed constant
with time. The inference procedure involved comparing the closeness of fit

between the observed histogram and the histogram of the proposed PDF.

The only practical drawback to this procedure is that streamflow records
are short. Consequently, the accuracy of the probability estimates for rare
hydrologic events of interest to the hydrologist are not very reliable (or at
least there is a lack of confidence in these estimates). However, the
advantage of dealing with independent random variables, is that the
mathematics are simple and the identification of the PDF is possible if the

number of observations are plentiful.
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The same cannot be said for the stochastic models used for drought
analysis. Not only is there the lack of data problem inherent in frequency
analysis but the mathematics become much more difficult. This of course leads

to a double problem in identifying the PDF for a stochastic process.

The inference of the PDF for a stochastic process is done using techniques
in time series analysis. In time series analysis, the general description of
the stochastic process requires the use of a PDF whose parameters could vary
with time. For example, the mean annual streamflow might be modeled as
increasing with time. However, this type of model was found to be very
difficult to infer from the data and not appropriate for use in predicting
likely streamflows for the hydrologists planning horizon based on available

data.

The problem was simplified by making the assumption that the stochastic
process is stationary and ergodic (at least weakly stationary and ergodic).
This assumption presumes that certain moments of the PDF are constant with
time. Thus, the stationary and ergodic assumptions are made to simplify the

models used in frequency and drought analysis.

The assumptions of stationarity and ergodicity reduce the problem of
modeling streamflow as a stochastic process to that of modeling a dependent
random variable. However, inference of the PDF for the jointly distributed
random variables is still a very difficult problem. The methods used to infer
the PDF of an independent random variable might be applied to dependent random
variables. However, this methodology for even two variables is cumbersome if

not impossible to apply in practice.
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The inference problem for dependent random variable is solved by using

linear regression to determine the dependence between random variables. 1In

this methodology dependence is indicated by a correlation coefficient.

However, the caveat was made that the correlation coefficient indicates the
linear dependence between variables. The correlation coefficient is a perfect
indicator of dependence only when the random variables are joint normally
distributed. 1In general, the inference of the PDF for dependent random

variables is not a problem that is easily solved in practice.

Correlation can be used to model serial dependence and joint dependence

between random variables. Serial dependence is used to model the relationship
between current and past observation of streamflow. The number of time
periods into the past that should be included into the serial dependence
between streamflows depends on the stream system memory. The system memory
can be deduced from constructing a correlogram which is a plot of the serial

correlation coefficient versus lag.

Correlation is also used to model streamflow dependence at different
locations or gaging stations in a regional analysis. Unfortunately, regional
analysis is probably not as applicable to drought analysis as it has been to
flood frequency analysis. The reason for this is that droughts are likely to
be more affected by watershed subsurface characteristics which are difficult

to ascertain on a regional scale.

In conclusion, the problem of modeling a streamflow process has been
equated to the modeling of a dependent random variable. In this section, the
normal distribution has been used as the probability model of dependent random
variables for example purposes. In subsequent sections, probability models
which are more appropriate for modeling streamflow are presented.
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Section 3

Autoregressive Model for the Streamflow Process

3.1 Introduction

The purpose of this section is to describe a particular type of stochastic
streamflow model, the autoregressive mode. This model was chosen not only
because of its simplicity, but also because it demonstrates some of the general
difficulties in modeling streamflow as dependent random variable. There are
many models that are more sophisticated than the autoregressive model. A
discussion of the reason why these models might be more desirable than the
autoregressive model is given in Section 5. However, a general description of
all the possible stochastic models described in the literature is beyond the
scope of this discussion. For those interested in persuing the topic further,

see either Salas et. al. (1980) or Kottegoda (1980).

In the previous section, the examples used the normal distribution as the
probability model. However, the normal distribution is not generally
recognized as being appropriate because histograms of observed streamflow are

usually skewed.

Therefore, the goal is to choose a probability model that is more
appropriate than the normal distribution for the streamflow process. However,
a dilemma is reached at this point because the mathematical tool for inferring
dependence between random variables, and thus a probability model, is linear
regression analysis. Yet, the inference of the stochastic dependence between
random variables for a non-normal joint PDF is, generally, not represented by

the linear regression coefficient.
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A solution to the problem is to determine the marginal distribution of the
random variables (see Section 2.5.4). 1In other words, given that X and Y are
dependent random variables (say streamflow at two different gages) determine
the PDF of X over all possible values of Y (i.e. the marginal distribution of
X). Once the marginal distributions of all the random variables being modeled

are known then transformations of these variables to a group of variables with

normal marginal distributions can be performed. After the transformation is
accomplished, regression analysis is performed to determine the dependence

between the transformed random variables. Thus, the problem of finding a

probability model for the streamflow process that has the desired characteris-
tics has been reduced to finding the appropriate marginal distribution for
dependent random variables and the correct transformation of these variables

to obtain a set of normally distributed variables.

Consequently, there are four steps to be performed in identifying the
appropriate PDF for the streamflow process. First, the marginal distribution
of the random variables must be found. This is analogous to finding the PDF
of an independent random variable. Second, a transformation of the original
data to a normally distributed set of data is performed so that the dependence
identified by the regression analysis can be related to a joint normally
distributed set of data. The third step is to perform a regression analysis
of the transformed data. The probability model resulting from the regression

analysis of the transformed data is referred to as an autoregressive model.

The "auto" descriptor indicates that serial dependence is involved, i.e.,
regression between lagged observations of a given random variable such as
monthly streamflows. The fourth and last step is to perform an inverse

transformation to determine the probability model for the streamflow process.
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In the following sections, the issues involved in selecting a marginal
distribution and the procedure used to construct and employ an autoregressive
model are discussed. In addition, a currently available computer model, HEC-4
"Monthly Streamflow Generator" (Corps, 1971) is described and an example

application is given.

3.2 Selection of the Marginal Distribution

The inference of the marginal distribution for a stochastic model of annual
or monthly streamflows (a dependent random variable) is essentially the same
in low-flow or flood frequency analysis (an independent random variable). The
inference procedure relies on the acceptance of the fit between the proposed
PDF and observed histogram. The criteria for the acceptance of fit is a
controversial subject. Because the short length of hydrologic records does
not allow confident estimate of rare event probabilities (i.e., estimates of
the distribution's tails). Yet, these are often the probabilities of most

interest.

For a better understanding of the problem, return to the example of Section
2.3.1, where the observed frequency distribution of the West Branch of the
Oswegatchie River was developed. Consider the comparison made between the
normal distribution histogram and the observed frequency distribution in
Figure 2.3. Note that in the last two intervals between 550 and 650 acre-feet,
there are only two observations available. The comparison of the model and
observations over this interval is of most interest to the hydrologist. Yet
this interval is where the estimatés of probabilities/occurrence frequencies

are the poorest.
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Statistical "goodness of fit" tests can be used to try and make an
objective decision regarding the fit of the data. However, there are problems
with using such tests. The problems are exemplified by considering the widely
employed chi-square goodness of fit test. Basically, this test models the
number of observations occurring in any interval of the observed frequency
histogram as a random variable. The method requires that the difference
between the expected and observed frequency of occurrence be summed for all
intervals of the histogram. If the total deviation does not exceed an
"expected"” deviation given by the chi-square test then the fit of the
probability distribution is accepted (for a more thorough explanation see most
elementary statistics, texts, for example Benjamin and Cornell, pg. 459, 1970,

and Haan, pg. 174, 1977).

The problem with this test is that in the tails of the distribution, the
occurrence frequency of a random variable (the number of observations per
interval) is being estimated by very little data. Consequently, the
computation of the deviation between the expected and observed frequency is
not nearly as reliable for the tails as towards the center part of the
distribution. Again, the problem is with a lack of data, a problem statistical
tests cannot resolve. These conclusions are supported by the comments of Haan
(pg. 178, 1977), Fiering and Jackson (pg. 69, 1971), Lane (1979), and Riggs
(1968). In particular, consider the comments of Riggs on low—flow frequency
analysis (pg. 3),

"Because particular basin characteristics fix the shape of a frequency

curve, no one theoretical distribution is generally applicable and no

theoretical frequency distribution will adequately describe the low-flow
frequency curve of certain streams,...”

Further, he feels that the effects of sampling error and basin characteristics
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on the shape of the frequency curve are much greater than an error made by
"hand fitting a curve." Annual and monthly volume frequency curves tend to be
smoother than shorter duration frequency curves. However, the implication of
these comments would seem to be that statistical criteria used to select among
theoretical probability models do not have much advantage over the graphical

method described in Section 2.3.2.

Obviously, classical statistics is not going to be of much help in
selecting a probability distribution. As an example of possible selection
criteria that might be more suited to the water resources engineer's need,
consider the study performed by Matalas (1963). Matalas proposed two criteria
to fit probability models to low flow data. First, the probability model must
predict a low flow at least as severe as the most severe observed low flow
while still remaining non-negative (i.e., a lower bound of zero flow is
required). The second criteria involved choosing probability models which had
an explicit relationship between the skew and kurtosis (the kurtosis is
proportional to the fourth central moment of the probability distribution).
The criteria then involved calculating the kurtosis by two methods, one by the
method of moments, the second by using the theoretical relationship between
skew and kurtosis (having calculated the skew by the method of moments). Best
fit was based on the consistency of the two calculated values of kurtosis.
Based on these criteria, Matalas found that of the four distributions tested,
the Gumbel Extreme Value and Pearson Type III were superior to the three

parameter Log Normal and Pearson Type V.

The important point to note is that Matalas constrained the fit to

estimate a low-flow at least as severe as that estimated from the observed

data. The water resources engineer constrained by social or political
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requirements may wish to use this type of criteria in the drought analysis.

In Matalas' study, an important point is made concerning the effect of
large flows (floods) on the calculation of the probability distribution skew
and the occurrence frequency of low-flows. In Figure 3.1, a typical cumulative
probability plot of the data in his study and the fitted Pearson Type III and
Gumbel distributions are shown. The important aspect of this plot to note is
the location of the outlying high-flow point in the data. Matalas points out
that this type of point has an extreme effect on the distribution skew and
resulting calculation of flow probabilities. 1In this particular example, if
the largest flow is neglected the skew is épproximately zero, whereas,
inclusion of this point results in a skew of 1.85. 1If this point is included,
the lowest cbserved flow of 1,070 c¢fs is underestimated by the Gumbel and
Pearson Type III distributions which indicate 1,370 c¢fs at the same exceedance
level. Neglecting this point yields a much better fit of the lower tail of
the frequency curve. This is an example of an extreme point which is
responsible for rejection of a probability distribution based on selection
criteria (see Section 2.4.1 on spurious events). Since the study is concerned
with fitting the lowest flow, possibly the extreme point should be disregarded

as an outlier.

The above examples in Matalas's study point out the decision problems
facing the engineer in selecting a probability distribution. What are the
criteria? Should an extreme point be excluded as an outlier? These questions
cannot be answered by statistical methods alone. The decision must be made
with consideration of the socio-economic realities of the project for which
the analysis is being done. For example, the consequences of failure of the

project such as a reservoir (failure to meet demand) may cause such a severe
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economic hardship, that the engineer is constrained to meet the most severe
drought on record. Consequently, the probability model is constrained to
predict as severe a drought as observed in the record, analagous to the

criteria which Matalas used in low-flow analysis.

In summary, there are significant difficulties involved in choosing the
"best” marginal PDF out of the infinite number possible. The rejection or
acceptance of any distribution, including the normal distribution, always

will involve some uncertainty.
3.3 Autoregressive Model Formulation for Annual Flows

The mathematical technique for performing a regression analysis has been
described in Section 2.4.5. However, it has only been described as a
mathematical technique for incorporating dependence in a probability model.
In this section, the regression model is developed based on an operational
view of a stochastic process. This should lead to better understanding of

the autoregressive model.

In Section 2, a stochastic process was defined as a purely random process.
However, an operational definition is that a stochastic process is composed
of a deterministic component and a probabilistic component. Fiering and

Jackson (1969) expressed these components mathematically as:

(qi - q) = di + ti (3.1)

where: qi = value of the stochastic process at the ith time step
(or integral period) from an initial known state

g = mean value of qj
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deterministic component

[
]

probabilistic component

A proposed form of the deterministic portion of the model is based on the
concept of system memory or equivalently serial correlation. Assume that the
process is stationary and ergodic and that there is a linear dependence between
the current annual flow, 9 and the previously observed flow, 9,

From equation (3.1), di is expressed as:

di = pl(qi_l - q) (3.2)

where: P, = lag one correlation coefficient

A more general form considers multiple lags:

q; = bo + bl Qg +eeeot bn 9 (3.3)

where: qi the annual flow lagged n years

o
il

coefficients of linear regression (functions of the
lagged serial correlation coefficient)

Practically speaking, the number of lags is difficult to determine because
of sampling errors in estimating p. For the introductory purposes of this
discussion, only lag one models are considered. Those interested in a further
discussion of multi-lag models should see Fiering and Jackson, page 67, 1971

or Salas et. al. 1980, Chapter 4.

The probabilistic component ti’ represents the randomness present in the
annual streamflows, e.g., the portion of the process that cannot be explained
with the adopted deterministic component. ti is chosen to preserve the
underlying probability model of ;- For example, assume q, has a normal

distribution. ti is chosen such that the mean and standard deviation of qi
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is preserved. There are two mathematical constraints used to determine ti'

Requiring the mean to be preserved gives the following results.
E[qi - ql = E[pl(qi_l - q) + ti] (3.4)
where: E[+] = expected or mean value of the term within the brackets
Since the expected value of 9 and Q. is equal to g then it follows:

Eft,1 =0
i

Consequently if we assume that the ti are normally distributed with mean zero
then the first condition is satisfied. The requirement that the standard
deviation of qi is preserved results in the final form of ti (see Fiering

and Jackson, pg. 50, 1971).

t.=e.d\/1—pi (3.6)

where: o

the standard deviation of qj

= the normally distributed random variable of unit
variance and zero mean

o
fobe
I

In summary, if the annual streamflow records are lag one linear autoregres-
sive and are normally distributed, then sample estimates of the mean, m,
standard deviation s, and the lag one serial correlation coefficient Ps
are calculated from the streamflow record using formula given in Section 2.

The lag one linear autoregressive model becomes:

- - 2
(qi - q) = rl(qi - q) + es 1 - r (3.7)

which is equivalent to the relations given in Section 2.4.5 for joint normally
distributed random variables. This can be seen by examining, for example,

equation 2.31. In the case of serial dependence, xi =q., , V., = qi, and
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r =r . Thus if sample estimates r and s are used for p and o,

X, Y 1 1 1

then upon substitution, equation (2.31) is equivalent to equation (3.7). Note
the equivalence between the marginal bivariate normal distributions of equations

(2.30) and 2.31) and the autoregressive model containing a normally distributed

error term, equation (3.7).

The critical point to this development is embodied in the steps taken to
derive the form for the error component ti through equations (3.5) and (3.6).
Due to the form of ti’ the sample statistics of 9> the mean, standard
deviation and lag one serial correlation coefficient are preserved by the auto-
regressive model. This property gives the model validity from a statistical

point of view.

The difficulty in applying the autoregressive model is that the appropriate
form for the error term, ti’ is not easy to derive in the case that the
marginal distribution of 9 is skewed. This is why a transformation is applied
to observed streamflows to obtain a set of data that has a marginal normal sample
distribution. The autoregressive model is then utilized for the transformed
data. In the next section, the means by which the autoregressive models can be

used in conjunction with the appropriate distribution are discussed.
3.4 Monte Carlo Simulation

3.4.1 Methodology

The autoregressive model has been proposed for the streamflow process. The
calculation of drought probabilities with this model require that the

conditional probabilities given by equation (2.21) be determined. Although it
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is possible to do this explicitly using equation (2.20) under special
circumstances (an example is given in Section 4.3), in general it is not
possible for an autoregressive model that involves multiple lags at a number
of sites. However, the conditional probabilities of interest can be derived

from the multi-lag autoregressive model using Monte Carlo simulation.

A Monte Carlo simulation is a method of sampling the values of a function
at random. In this particular case, the interest is in sampling at random the
values of a PDF. Thus, the Monte Carlo simulation can be viewed as creating
observations of the random variable by artifically sampling the random

variable's PDF.

The advantage of this method is that the integration shown in equation
(2.20) does not have to be performed to calculate the drought probabilities,
Instead, the artificial observations of the random variable can be used to
create a sample frequency distribution as described in Section 2. The
frequency distribution generated is then used to estimate occurrence
probabilities. The probability estimates can be made as accurate as needed

since as many observations as needed can be generated by the simulation.

The key to the simulation js to be able to generate random samples of the
probability distribution. Random sampling is done by generating random
numbers. There are many examples of random number generators that are
encountered in games of chance. The rolling of a die generates random numbers
from one to six. The roulette wheel spins out random numbers. A naturally
occurring random number generator is the number of emissions of particles by

radiocactive substances in a given period.
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Since the number of computations involved is large, practical considera-
tions require the use of the computer which has standard routines available
for generating "pseudo" random numbers. These routines cannot be used to
generate true random numbers because the computer's finite memory dictates
that the sequence of random numbers will eventually have to repeat (a good
random number generator has a long period before repetition). However, the
pseudo random numbers generated are generally considered to be adequate for

practical purposes.

As an example, consider the simulation of the lag-one auto regressive
process (reproduced from Fiering and Jackson (1971)), Table 3.1. In this
process, random standard normal deviates are used to produce artificial or
synthetic samples of annual flows. The procedure is simple, first the sample
statistics are calculated from the observed data (in this case the flows are
assumed to have a normal marginal distribution). The simulation is begun by
assuming an initial flow value. A random normal deviate is generated and
combined with the initial estimate to produce a streamflow value for the next
year. This procedure is repeated to successively obtain flows. The simulation
is terminated based on the accuracy needed for the simulated histogram. Note
that the initial estimates for the simulation has little effect if the
simulation is of sufficient length. Most often, several of the initial values

are discarded to remove the effect of the assumed initial flow.

The synthetically generated flows can then be used to calculate frequency
histograms to evaluate the conditionsl probabilities of equation (2.21).
However, the synthetic sequences of flows can also be useful in simulation

studies as is discussed in Section 3.6 or in deriving the distributions of

certain drought statistics, as is discussed in Section 4.3.2.
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Table 3.1

+Example Monte Carlo Simulatdion

csy/1-r,2

q. qi—m rl (qi—m) m+rl (qi_m) e, ei —r 1 qi+1
588.80 0.00 0.00 586.80 -0.523 -83.60 505.20
505.20 -83.60 -31.62 557.18 0.611 97.66 654.85
654.85 66.05 24,98 613.78 -0.359 =57.38 556.40
556.40 -32.40 -12.26 570.54 -0.393 -62.82 513.73
513.73 ~75.,07 -28.39 560.41 0.084 13.43 573.83
573.83 -14.97 ~5.66 583.14 -0.931 -148.81 434,33
434,33  -154.47 -58.42 530.38 -0.027 -4.,32 526.06
526.06 -62.74 -23.73 565,07 0.798 127.55 692.65
692.63 103.83 39.27 628.07 1.672 267.26 895.32
895,32 306.52 115.92 704.72 -1.077 -172.15 532.57

= - . r 2
9541 m+r1(qi m)+ei sffj;;
m = sample mean = 588.8 (cfs)
s = sample standard deviation = 172.667 (cfs)
r= lag-one serial correlation coefficient = .37819
409447 = generated flows in ith and i+lth years

¥ Reproduced from Jackson and Fiering, 1971, pg. 64.
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3.4.2 Transformations

As pointed out previously, skewed distributions are likely to be used in
streamflow analysis. Unfortunately, these distributions cannot be easily
employed to meet the constraints needed to derive a relationship similar to
equation (3.7). For example, assume that the observed flows are distributed
log~gamma. If q. _ and e, have this same distribution, then the resulting
qi is not log-gamma distributed (the sum of log-gamma distributed flows is
not necessarily distributed log-gamma). Thus, the constraints involved in

deriving equation could not be met and the desired conditional probabilities

could not be calculated.

These constraints can be fulfilled by creating a data set with a normal
distribution from the original data set. This is accomplished by using a
mathematical transformation. Equation (3.7) is then employed to generate
transformed flows and an inverse transformation is then applied to these
results to obtain an untransformed synthetic data set. This data set is then

used to derive the conditional probabilities.
The log transform is often used on streamflow data. This transformation
takes the form:

yi = loge(xi + b) (3.8)

the transformed flow

where: ¥y

o'
It

a small percentage of the mean of Xi

The constant is added to the original flows to avoid the logarithm of zero,

which is undefined. For example purposes, the log transformation was performed
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on data shown in Table 2.1 and plotted on normal probability paper as shown in
Figure 3.2. The data falls close to a straight line, indicating that the log
of the transformed data is approximately normally distributed. This indicates

that the original data is approximately log-normally distributed.

The calculation of the conditional probabilities by this method may only

be approximate. For example, the log transformation produces an equation set:

- uy) + °y \/i - P e, (3.9)

(Fli - uy) = (y. i

1-1

where uy’ cy, and P, are the model parameters for the logrithms of the data.

Obviously, the conditional probabilities preserved by this equation will be

for the logarithms of the data, not of the original data.

The accuracy of this approximate method for deriving the conditional
probabilities depends on the severity of the transformation (for a further
discussion of this point see Salas et. al., 1980, pg. 70). 1In some cases, the
transformation will allow the preservation of the transformed and untransformed
data. For example, the subtraction of a constant from the normally distributed
data in Section 4.2 introduces no approximation. A general method for
determining the severity of the transformation is to compare the model
parameters calculated from the observed and generated data. If the mean,
standard deviation, skew and serial correlation coefficients are not
"significantly" different, then the transformations used and the calculated
conditional probabilities are acceptable. Statistical tests are useful in
determining if the differences between the observed and generated data are
significant (see Haan, pg. 161, 1977). 1In Section 3.5.3, statistical tests
are discussed which are employed by HEC-4 (Corps of Engineers, 1971) for this

very purpose.
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3.5 HEC-4 Autoregressive Monthly Streamflow Generator

3.5.1 Basic Methodology

The HEC-4 computer model generates monthly flows at multiple stations in a
manner analagous to the simple annual model. HEC-4 assumes that observed
monthly flows have a log Pearson III distribution. The Wilson-Hilferty
transforma- tion is performed on the observed data to obtain normally

distributed variates.

As in the case of the simple annual model, the model is composed of a
deterministic and random component (equation 3.1). The deterministic
component accounts for the cross correlations between stations and the serial
correlations between successive monthly flows (lag one serial correlations).
The correlations are determined by a linear regression:

Ki,j = B, Ki,1 + B, Ki,z Fooeot Bj—l Ki,j—l + Bj Ki—l,j +. ..

+ Bj+1 Ki—1,j+1 +...+ By Ki—l,n (3.10)

where: Bj parameters of the regression

transformed flows of the ith month and the jth station

]

Ki,j

Note that this regression includes lagged serial correlations, regression with
. ., ecross—correlations, regression with K, , , and lagged cross-
i-1,3 1,3-2

correlations, regression with Ki 1, 41’ which is essentially a combination of
=4y

the factors given in equations (2.36) and 2.37).

The random portion of the stochastic model is given by:

t, =e .\/1- (R 02 (3.11)
1 1,] i,]
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multiple coefficient of determination (see

where: (Rj j)?2
Draper and Smith, 1966)

normally distributed random numbers with mean
zero and variance one

€1,

The random component represents the uncertainty in predicting the values of

K., . with the linear regression.
*

As a simple example of the use of HEC-4, consider a two station model:

K. =B K, + B K, + e, 1-R, 2 (3.12)
i,2 1 i-1,1 2 i-1,2 i,1 i,z

K. =B 'K, +B"'K, + e 1-R (3.13)
i,1 1 i, 2 j-1, i,2 i,z

where Ki is the generated flow at station one and Ki is the generated
2

s 1 s

flow at station two. Note that since HEC-4 is designed to utilize monthly flow

data, there are twelve sets of the Bi and Ri , coefficients for each station j.

¥

In this case, the program computes 48 Bi coefficients and 24 Ri j coefficients.
k]

The equation is general and could be used to simulate flows for any integral
period, such as seasonal or annual. At this time HEC-4 is designed to simulate

only monthly flows.

The generation of flow values proceeds similarly to that of the single

station annual model described in Section 3.4.1. For example, K the flow

’1’
in the first month at the first station (say January), is related to flows one
month earlier (December), K - and K and an artificially generated
12,1 12,2,

random number, e1 X Note that Ki 1 is related to a lagged flow at

1 *

station two, K, 2 rather than a concurrent flow, Ki . This is
iy ]

necessary since the concurrent flow Ki 2 has yet to be generated. Kl X
? *

is then used with the lagged flow at station two, K12 ) to generate the
’

January flow at station two, K1 . This is done recursively for all months

in as many years as deemed necessary.

79



3.5.2 Transformation of Historical Dats

The HEC-4 model assumes that streamflow statistics can be modeled by a
log-gamma (Log—Pearson Type III) distribution. The advantage of this type of
distribution is that it allows for a non-zero skew in the observed streamflow.
However, log-gamma distributed variables cannot be used in equation (3.10)
since the sum of log-gamma distributed variables is not necessarily distributed
log-gamma. This fact prevents the preservation of the original data statistics

when equation (3.10) is used with log-gamma variates.

HEC-4 overcomes this problem by transforming the original data from an
assumed gamma to an approximately normal distribution using the Wilson-Hilferty
transformation equation. The transformation steps used by HEC-4 are as
follows:

1) Base 10 logarithm transformation

Xi = loglo(qi + b) (3.14)
where: qi = observed flow
b = one percent of g

b is used to assure a non-zero flow, as the logarithm of zero is undefined.

2) Adjust to zero mean and unit standard deviation

7, = —t—ou (3.15)

where: Xi = logarithm of flows

4
L]

mean of the Xi

0
I

sample standard deviation of the Xi

3) Wilson-Hilferty transformation from Pearson III to a normally

distributed variate:

80



i/3
Ki = 6[(.55Z . Zi + 1) - 1]/gZ + gZ/6 (3.16)

where: = the sample skew of Zi

82
The Ki result in an approximately normally distributed variable appropriate

for use in evaluating the parameters of equation (3.10). Obtaining synthetic
flow values from the generated Ki is a simple matter of applying the inverse

of the transformations just described.
3.5.3 Statistical Analysis Performed by HEC-4

HEC-4 provides a number of statistics for evaluating the generated stream-
flows. As might be expected, information comparing observed, reconstituted
and generated flow mean, standard deviation, skew and percentage volumes of
yearly flow values are provided. 1In the latest version, statistical tests are
performed to determine if the mean and standard deviations of the generated
flows are "significantly" different than the historical (or reconstituted
flows). As mentioned previously, the autoregressive generating scheme
guarantees that the mean, standard deviation, cross and lag-one correlation
coefficients are preserved for the transformed data and not the untransformed
(i.e., actual streamflow observations) data. Thus, statistical tests have
been provided to check if the transformation used by HEC-4 has resulted in a
generated set of untransformed flows which are significantly different than
the historic data. If there is a significant difference, then the generated
sequence is not representative of the historical trace and the transformation

has been too severe.
The statistical tests provided are only strictly applicable to normally
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distributed variables. Consequently, these tests only give a rough guideline

as to the acceptability of the generated sequence.

To test if 9. representing the untransformed generated flow-mean, and
qz, representing the untransformed historical and reconstituted flow mean,

come from the same normal population the test statistic formed is as follows:

z=1(q -4q )/\“/(02 /n) + (6> /n) (3.17)
1 2 1 1 2 2
where: n , n = sample sizes of observed and generated data
S 02 = standard deviations of observed and generated
untransformed data
al, az = mean values of observed and generated untransformed data

Z can be shown to be a normally distributed random variate with mean zero and
standard deviation one. As an example of the use of the statistic, determine
the value of z such that the generated results are rejected at a significance
level of 10% (i.e., an error is made in rejecting the generated results in 10%
of the model applications). The confidence level is met if (see Figure 3.3):

Plz <2<z ]l=1-a (3.18)
1 2

where: z = normal deviate at a/2 significance
1

normal deviate at l-a/2 significance level

N
]

where o is the percent significance level. As a specific example, in a
particular HEC-4 run for the Red River watershed, the maximum value 6f the
z-statistic = 1.62 and a/2 = 5.2%, for all months considered. Hence the
generation results can be accepted at a 10% significance level when considering

means.
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The generated standard deviations are tested by forming the f statistic as

follows:

£ =35> 75 (3.19)
1 2

f can be shown to follow an F distribution. And as in the case of the z test,

a significance level o can be attached to the probability:

P[f1 < f < f2] =1 - a/2 (3.20)
where: fl = f-distributed deviate at a/2 significance level
f2 = f-distributed deviate at 1-a/2 significance level
s = the larger of the untransformed observed or generated

flow's standard deviation based on n1 degrees of freedom
s = the smaller of the untransformed observed or generated

flow's standard deviation based on n, degrees of freedom

Based on this information, a judgement as to whether or not to accept the

generated results can be made as in using the z test.

3.6 Example Application

For example purposes, HEC-4 was used to determine the probability associa-
ted with various reservoir capacities needed to satisfy the water supply needs
for a community located on the Arroyo Seco River near Soledad, California.

The procedure used to perform this analysis involved the following steps:

1. The historic record of 54 years was used to perform a mass curve
analysis (see below for a description of mass curve analysis) based on annual
inflows. The mass curve analysis assumes that the communities demand is 59420

acre-feet, one half of the mean annual streamflow.
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2. HEC-4 was then used to "generate" one hundred, 50-year sequences of
synthetic monthly streamflow. To supply the analysis, the assumption was made

that no periodicities or trends were identifiable from the historic record.

3. 50-year sequences, each of the one hundred of monthly streamflows were

totaled to produce one hundred, 50-year sequences of annual streamflow.

4, A mass curve analysis of each of the 50 sample sequences was performed

to obtain a reservoir capcity for each sequence.

5. A histogram of the reservoir capacities to estimate the probable

reservoir capacities.

Mass curve analysis is a well known technique for estimating reservoir
capacity, given a period of inflow and demand. A brief description of this
technique follows; however, for a more complete description consult Maass et.

al. 1962, pg. 120.

Consider the mass curve (sometimes referred to as a Rippl diagram) shown
in Figure 3.4. The figure shows the cumulative inflows to the reservoir, the
cumulative draft and the cumulative departures from the demand. 1In this case,
the draft was assumed to be one-half the mean flow. The cumulative draft is
the draft multiplied by the number of years and the cumulative departure from
the demand is the cumulative inflows minus the cumulative demand as shown at
point B. The reservoir capacity is determined by first assuming that at the
peak of the cumulative departures curve the reservoir is full. As the
cumulative departures decrease from this point, there is a draft on the

reservoir because the demand exceeds the inflow. Therefore, the total draft
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on the reservoir is measured as the distance from the peak to the trough on
the cumulative departures curve and the maximum draft over the period is the
required size of the reservoir (see points A and C). This is a fairly simple
procedure but is complicated by the assumption of the starting storage in the
reservoir (see Maass et. al. 1962, pg 120 for a complete explanation of this
point). However, the starting condition of the reservoir is of no importance
in this example since a comparison is being made between the storage required
based on the historic record and the probability of required storages based on

the HEC-4 lag-one autoregressive model.

In Figure 3.5, an example of the HEC-4 computer runs made to generate the
synthetic inflows to the reservoir is shown. In Figure 3.6, the distribution
of the storages as a function of sample size, i.e., the number of 50-year
synthetic streamflow sequences, is displayed and compared to reservoir storage

of 81,500 acre-feet.

The most striking feature of this result is the significant sampling
variability of reservoir storage that results based on a lag-one autoregressive
model. Note from Figure 3.6, that approximately 25 percent of the generated
50-year sequences, estimated probability of 0.25, require a reservoir storage

that exceeds the storage required by the historic record.

The important conclusion to be drawn from this analysis, and probably one
that is not too suprising, is that there is a great deal of uncertainty in
trying to predict the future reservoir capacity requirements. Of course, the
above results are a function of the probability model (the lag-one autoregres-
sive model) used and the historic sample (in this case 54 years of streamflows

for the Arroyo Seco River). However, irrespective of the probability model
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chosen, the qualitative results of the stochastic analysis would be the same;
the prediction of future reservoir requirements is highly uncertain.
Consequently, the reliability of the reservoir design should be insured based

on some factor of safety.

3.7 Annual vs. Seasonal Autoregressive Models

The integral period, or equivalently, the computation interval for the
drought analysis determines the computation interval for the autoregressive
model (remember selection of the integral period is one of the four drought
analysis tasks described in Section one). The selection of the integral
period depends on two factors. One factor is the type of analysis to be
performed. For example, if a reservoir is designed only to satisfy a seasonal
demand (the annual summer drought) then a seasonal (say monthly) autoregressive
model may be only necessary for the drought analysis. However, if reservoir
storage must consider more than a single year drought, an over-year storage

problem, then an annual model may be all that is necessary.

A second factor is the need to preserve the statistics of the annual flow
series in the generated seasonal flow series. This need arises if the modeller
identifies a degree of persistence (a long-term tendency for above or below
normal flows to be followed by the same) in the observed annual flow series.
Persistence is a very important issue which is discussed in detail in Section

five.
This second factor poses a difficulty for the autoregressive model
described in this section. Although the seasonal autoregressive model will

preserve the statistics of the observed seasonal flows, it will not in general
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guarantee that the corresponding observed annual flow statistics are preserved.
Consequently, if there is persistance in the annual flow records, then another
modeling scheme might be chosen. For example, a technique known as disaggre-
gation can be used to preserve both annual and seasonal flow statistics in a
stochastic streamflow model (see Salas et al. 1980, chapter 9). A computer
program which currently utilizes disaggregation for autoregressive schemes and

is currently available to the public is LAST (1979).

An alternative to using a more sophisticated model, if persistence is not
an issue, is to compare the annual statistics (i.e., mean, variance, and lag-
one autocorrelation) of the flows generated by a seasonal autoregressive model
with the observed historical statistics. If the two are equal, then the
seasonal model is probably adequate for the drought analysis. However,
disaggregation is the preferred technique because it guarantees, at least
approximately, that the observed annual and seasonal statistics are preserved

by the generating procedure.

3.8 Simulation and Synthetic Streamflows

To this point, the discussion has focused on calculating the conditional
probabilities of drought severity based soley on hydrologic factors. However,
the probability of drought occurrence is also a function of the socio-economic
factors mentioned in Section 1. Therefore, the probability model should
account for these factors to arrive at a proper evaluation of drought

probability.

As an example, consider again the problem of determining reservoir storage

capacity. The probablity that the reservoir storage will not be sufficent is a
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function of the inflow, the demand, the storage capacity (which is to be
determined), the reservoir operational policy and a host of other factors. To

include all these factors in a single probability statement would seem to be

hopeless.

In synthetic hydrology, the problem is solved by utilizing hydrologic
simulation models to calculate the probabilities. To perform the simulation a
hydrologic model is created which is able to calculate reservoir storage
levels based on reservoir design, inflows, demand, operating policy, etc.
Inflows to the model are generated from the Monte Carlo simulation of the
autoregressive model. The hydrologic model is then used to determine storage
levels based on these '"synthetic" inflows. An example of how this is done was

given in a previous example.

The calculated storage levels are observations of a random variable {a
variable which is a function of other random variables, inflow, demand and
operating policy). Frequency distributions from the model simulation results

could be constructed to determine the conditional probabilities of storage.

In practice, the storage level frequency distribution is not constructed.
A more common approach is to generate the synthetic inflows and determine, by
simulation, if the proposed reservoir design and operational policy are

adequate (e.g., determine if the storage levels meet the required demand).

The important point to remember is that the Monte Carlo simulation

produces no new information. The generation of "synthetic" streamflows is a

means of calculating a conditional probability. 1In general, the explicit

calculation of these probabilities is impossible when serial and cross
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correlations are to be modeled in the streamflow record. The Monte Carlo

simulation is the only practical means to evaluate these probabilities when a

great many factors are involved.

3.9 Summary

In this section, the means by which a lag-one autoregressive model of the
streamflow process is implemented was described in detail. The implementa-

tion of this type of probability model can be summarized in four steps:

1. The marginal distribution for the streamflows is selected using

techniques described in Section 2.

2. The autoregressive model is only practically applicable to random
variables which have a joint normal distribution. Consequently, a
transformation is made of the observed streamflow data with underlying
marginal distribution selected in step 1 to produce a data set with a

marginal normal distribution.

3. The probable values of streamflow that are implied by the autoregres-
sive model cannot be evaluated exactly in most cases of practical
interest. Thus, a numerical procedure, Monte Carlo simulation, is

performed to evaluate these probabilities. The results of the

simulation are in terms of transformed synthetic streamflows.

4. An inverse transformation is performed to obtain synthetic streamflows.

The synthetic streamflows resulting from the autoregressive model may be used
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to create streamflow histograms. These histograms can be used to estimate the
probable streamflows implied by the autoregressive model. However, the major
use of the synthetic streamflows is in simulation studies of water resource

systems.

As an example of these studies, the HEC-4 computer model, which uses a
monthly autoregressive model, was used to "generate" synthetic streamflows to
estimate probable reservoir storage requirements. Since reservoir storage was
the random variable of interest, the snythetic sequence of streamflow were
used along with mass curve analyses to create histograms of reservoir storage.
The histograms of reservoir storage were then used to estimate probable

reservoir storage requirements.

Thus, synthetic streamflows are generated based on a probability model,
The synthetic flows represent no new information. In fact, if the probabili-
ties of interest could be determined by the direct methods outlined in Section
2, then simulation with synthetic flows would not be necessary. However, since
water resource systems are complex, the probability models which necessarily
describe these systems are also complex. Thus the direct methods of Section 2
cannot be employed, and the simulation approach which employs synthetic flows

must be used.
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Section 4

Drought Analysis

4.1 Introduction

In the previous sections the discussion has focused on the random variable
streamflow. However, the main interest of this presentation is on the likely
occurrence of drought. Recalling the discussion in Section 1, drought is
defined by the nature of the water deficit (e.g., streamflow), the truncation
level (e.g., the mean annual flow) and the integral period (e.g. one year).

The purpose of this section is to combine the concepts used in defining drought
with the streamflow probability models discussed in the previous section to
derive distributions for statistical parameters of drought occurrence. In
Section 4.2 on the theory of runs, statistical parameters for drought are
defined, and in Section 4.3 stochastic streamflow models are used to derive

the distribution of drought statisties.

4.2 Theory of Runs

In previous sections, streamflow was the process being modeled as a random
variable. However, the probabilities associated with various levels of
streamflow do not relate directly to drought probabilities. The level of
streamflow must be related to a demand for water to assess drought potential.
A convenient method to develop this relationship is to formulate a parameter
or parameters which are a function of the difference between the level of
streamflow and demand. Since streamflow and demand may be modeled as random
variables, their difference or parameters of their difference are also random

variables. Consequently, probability models of these parameters would give a
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more direct measure of drought potential.

The theory of runs is an approach to analyzing a time series, such as
streamflow, which develops parameters more suited to directly analyzing drought
potential (Yevjevich, 1972). The theory of runs separates a time series into
areas above or below a truncation level, xO (see Figure 4.1). As described
in Section 1.1, (see Figure 1.1), the truncation level (from the water
resources engineer's point of view) is used to identify drought phenomena in

the hydrologic record.

The parameters of interest are the run sum S (the cumulative deviation from
xo), the run intensity M (average deviation from xo) and the run length D
(time between successive crossings of Xo)' The parameters may either
indicate a positive run (an upcrossing at xo) or a negative run (a down-
crossing at xo). In drought terminology, SL is the severity, DL is the
duration and ML is the intensity (Dracup el. al., 1980). The relationship

between the parameters is:

S. =M D (4.1)

The truncation level x0 can be a constant, a function of time or a stochastic
variable. A typical choice in drought analysis is some percentage of the mean

flow, which could be considered as an average demand.
Consequently, the objective of drought analysis is to derive the likely

values of these statistics. As will be shown, this objective can be met once

a stochastic model for streamflows has been developed.
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4.3 Drought Duration Analysis

4.3.1 Ezxact Calculation of Probable Drought Duration

In this section, an exact expression for probable drought duration is
derived for a simple problem by performing the integration of a joint PDF.
The expression is "exact" in only the mathematical sense. The integration is
performed without using any numerical approximations. This is generally not
possible for most practical engineering problems because the PDF is usually
not of a directly integrable form. However, the reader should remember that
there are sampling errors involved in inferring the PDF from observed flow
records. Consequently, any espression for probable drought duration is

approximate because of the uncertainty in deriving the PDF.

The calculation of drought duration exceedance probability is equivalent
to calculating the probability that successive flows are less than the
truncation level. Assume for the moment that annual flows are being
considered and no serial dependence exists (e.g., the flows are independently

distributed random variables). The probability that N annual flows are less

than the truncation level is the product of the probabilities that a flow in

any one year is less than the truncation level:

P[D.L < Nl =P[x <x ] P[x <x1...P[x, <x 1 P[x. <x }...PIx < x 1]
L 1 0 2 o i o i+1 o n o

(4.2)
where: xi = the transformed flow in the ith year
= (qi - q)/oq
a = mean annual flow (assuming sample equal to population value)
cq = gstandard deviation of flows
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Note that the observed flows, g, have been transformed by subtracting the mean
and dividing by the standard deviation. This results in a variate, x, with

mean zero and variance one, which is convenient for calculation purposes.

The probable drought duration can be calculated by using a method described
by Sen (1976). He notes that Feller (1957) developed an equation for the run

lengths, positive or negative, in a series of infinite length as:

[+ ]

P[D, 2 N] = P(N) + § P(M,N) (4.3)
L
M=1
where: P[D;, 2 N] = the probability that the drought duration exceeds
N years
P(N) = probability that N successive streamflow volumes will
be less than or equal to the truncation level
P(M,N) = the joint probability that N successive streamflow

volumes less than or equal to the truncation level
will be followed by M values greater than the
truncation level.

Since the flows are independent, the probability that a given flow is less

than or greater than a particular value can be obtained by integrating the PDF,

as shown in equation (2.3), to obtain the probabilities:

Plx £ xol =p (4.4)

Plx > xO] (4.5)

]

=]
i

ey
&

where xo, the mean annual flow, has been assumed to be the truncation level.
The probability of an independent random variable having N successive values
less than X, is just the individual probability raised to the Nth power.
Thus, the two terms in equation (4.3) can be calculated as:

P(N) = pt (4.6)
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x>
P(M,N) =) pNnH (4.7)
M=1 ‘

Equation (4.7) is the sum of a geometric series (see Kaplan, 1952, pg. 167)

which simplifies to:
Y oM = [(/1-m) - 11pY = (/p - 1PV (4.8)

Substituting equation (4.8) and (4.6) into equation (4.3) the probable drought
duration exceedance probability is obtained as:

P[DL 2] = pN—l (4.9)

The probability that drought duration equals a given value is calculated as
(Feller, 1957):

P[DL = N} = P[DL 2 Nl - P[DL 2 N+1] (4.10)

Assuming that the probability of exceeding or being below x, are equal,

p=n=(1-p), then applying equation (4.9) to equation (4.10):

N- N N- N
P[DL =N] =p o P =7p * (1-p) =p (4.11)

p can be calculated once the PDF of the flows is determined.
The above solution is not generally applicable because flow volumes usually
demonstrate serial dependence. In this case, the flow's serial dependence is

expressed by a joint PDF. The drought duration probability is then found by

calculating the terms in equation (4.3) for a dependent random variable:

X X
o o
P(N) = / / f(x ,x ... x)dx dx ... dx (4.12)
_ PA 1 2 N T 2 N
where: f(x ,x ... X ) = joint PDF
1’72 n
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P(N) = the probability that N successive flows are less than

truncation level for a dependent random variable

As discussed in Section 2.4.5, deriving the joint PDF is a difficult task.
This task is simplified by assuming that the flows can be modeled by an annual

lag-one autoregressive process. In this case, the probability of a flow being

less than the truncation level is dependent only on the previous year's flow,

X, .t
i-1

X
o
Pix, £ x | x. £x]= j[ f(x, | x, )Hdx (4.13)
i o i o A i

where: £(x; | x;j.,) = conditional probability for annual flows

The joint PDF of equation 4.4 becomes (see equation 2.18):

(4.14)
f(xl,xz... xN) = f(xl) f(x2 | xl) f(x3 ] xz)... f(xi+1 | Xi)"' f(xN ] XN—l)
where: f(xi) = marginal distribution of the xi
Substituting for the joint PDF in equation (4.4) P(N) becomes:
X X
o o
P(N) = /f(x Ydx /f(x | x Ydx ...
1 1 2 1 2
s ) -
b4 e
}(o o
f(xi+1 | xi)dxi+1"' -/.foN | xN_l)de (4.15)
-0 -0
and correspondingly:
be
[o /[o
P(M,N) = J f(x )dx ) f(xN | x N_l)de
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fo %o
.o 4,
/ f(XN+1 ] xN)de _Z f(XN+M | XN+H—1)dXN+M (4.16)

-0

where: P(M,N) = the probality that N successive flows less than or equal
to the truncation level are followed by M successive flows
greater than the truncation level for a dependent random

variable

The conditional probability is calculated using equation (2.20):

P(xi £ Xo’ X £ xo)
Pix £ x | x x 1 = (4.17)
i o i-1 o P

A

If

joint probability distribution between

where: P(x, £ x , X, £ x)
i (s} .
two successive annual flows

P = marginal probability that X, is less than X,

Sen (1976) calculated drought distribution probability by assuming that
the joint probability between two successive streamflows in equation 4.4 is

bivariate normal:

X X%
[° ] et
P(x, £x , X, £x) = C . )
i 0o’ "i-a ) A A 2wy - p2y/2

1

exp(—(x> - 2p X X + X° )/2(1 - pf)))dx dx N (4.18)
i 11 i-a i-1 i i-1

To solve equation 4.18 explicitly, Sen assumed that the mean adjusted flow is
equal to the truncation level (note the mean of the adjusted flows is equal to
zero; see equation 4.2). The drought probabilities were derived by Sen by
integrating equation (4.18) exactly; and then using this result with equations
(4.15), (4.16) and (4.17) to calculate the terms in equation (4.3) to obtain

[equation 28, pg. 1509, ASCE, HY10, October, 1976):
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PID, = N] = (1 — m)m"~ (4.19)

where: N = number of drought periods
P, = lag one serial correlation coefficient
. N-1
m= (0.5 + (1/7) arcsin (pl))
P[DL = Nl = Probability that N consecutive flows are less than

the demand

This gives an explicit value for drought duration probability assuming a
lag-one autoregressive process (a joint bivariate normal distribution between

successive flows).

As an example of the use of this methodology, consider the annual flow
volumes of the West Branch of the Oswegatchie River (Table 2.1), assuming that
these flows demonstrate a joint normal serial dependence. The lag one serial
correlation coefficient is then calculated using equation 2.36. The resulting

drought duration probabilities calculated are shown in Table 4.1.

4.3.2 Probable Drought Occurrence Calculated by Monte Carlo Simulation

The purpose of this section is to demonstrate the equivalence between the
exact solution given in the previous section and an approximate technique,
Monte Carlo simulation, for probable drought duration based on a lag-one
autoregressive model. Furthermore, the versatility of the simulation approach
is demonstrated by calculating probable drought severity which is not easily

obtained exactly.

The probable drought duration, DL’ and, severity, ML, for an annual
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Table 4.1

Comparison of Probable Drought Duration
Obtained by Exact and Monte Carlo Methods

PiD; = NJ
N (Years) tExact *Monte Carlo **Monte Carlo

1 L4456 L4532 .4583

2 .2470 L2426 .2500

5 L0421 .0414 0.0
10 .0022 .0019 0.0

t P[D;, = N] = probability of having drought length of N years

= (1-m)mi-1
where: m = 1/2 + (1/«) aresin (r,;)
r, = Sample Lag-one Serial Correlation Coefficient

.17 (W. Br. Oswegatchie River)

* Estimate after 100000 simulations

*% Egtimate after 100 simulations

integral period were obtained by generating synthetic streamflows with the
lag-one autoregressive model. The assumptions were made that, as in the
previous section, the flows are joint normally distributed and that the demand
is equal to mean annual streamflow. The sequence of steps taken to calculate

these parameters are as follows:

(1) "Generate" synthetic streamflows using Monte Carlo simulation.

(2) Note the durations DL’ and volumes of the synthetic sequence, SL’

that are less than the truncation level (see Figure 4.1).

(3) Construct sample histograms of SL and DL for the synthetic

sequence. This is done as in the previous examples, where histograms
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were constructed (see Section 3.6) by grouping the number of

observations of DL and SL into selected intervals.

(4) Repeat steps (1) through (3) for synthetic streamflow sequences of
increasing length. The histograms for successive sequences are
compared to determine if the estimated probabilities for S_ and D

L L

are approaching a final value.

The above steps were incorporated into a computer program and used to
analyze the annual streamflow sequence given for the West Branch of the
Oswegatchie River (the same data used as in the previous section). The
computer program listing and sample output from the program is displayed in
Appendix A. To demonstrate the validity of the synthetic flows obtained by
Monte Carlo simulation, the sample mean, standard deviation and skew for the
generated sequence of synthetic flows was calculated and is displayed in Table
4.2. Note that as the number of simulations increase, the sample statistics
of the generated sequence approach that of the original data set which

validates the simulation procedure.

The results of the analysis are summarized by the histograms of DL and
SL given in Figures 4.2 and 4.3. To compare the exact mathematical solution
for DL given in the previous section and the Monte Carlo simulation, the
estimated cumulative probabilities must be calculated from the histogram.
This is done by the same procedure performed in Section 2 for flood frequency
analysis to calculate sample cumulative probabilities. For example, consider
the histogram based on 100 years of simulation for drought duration shown in
Appendix A. The estimated probability that a drought is only one year in

duration is equal to the total number of simulated droughts of one year in
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duration (equal to 11) divided by the total number of simulated droughts (24)
resulting in an estimated probability P[DL = 1] = 11/24 = .4583. This is
shown as the drought duration fraction in Table 4.2. Comparison of the Monte
Carlo estimates with the exact solution are shown in Table 4.1 for both 100
and 100000 years of simulation. Note that for the more common drought
durations that both simulation lengths compare favorably to the exact solution.
However, for the rare durations (5 or 10 years) a large number of simulations

are needed to approximate the exact solutions.

Table 4.2

Sample Statisties for Monte Carlo Simulation

Sample Estimate of Statistics at the End of N Simulations

Standard
Mean Deviation Lag-one

N (ac-ft) (ac-ft) Correlation
100 378.8 75.3 .039
1000 372.6 75.3 .173
10000 372.9 74.6 .166
50000 372.7 74.6 .163
100000 372.7 74.6 .170

Specified Model Parameters
372.6 74.8 .170

Inspection of the histograms indicates that the central portions have not
changed significantly in proceeding from (10,000) simulations to (100,000)
simulations. The corresponding probable drought severity histograms for the

maximum number of simulations are shown in Figure 4.3.
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As a concluding note, the number of simulations needed to estimate the
probabilities near the central portion of a distribution are necessarily less
than those needed to estimate the probability at the tails of the distribution.
This can be seen by inspecting Figures 4.2 and 4.3 and noting that the tails
of the histograms do not converge to a constant value as quickly as the
central portion. Again, this demonstrates the problem of trying to estimate
rare events, i.e., the tails of the probability distribution. Relatively few
observations (or Monte Carlo simulations) are needed to estimate the mean of
the distribution (the central portion) but significanly more are needed to

estimate the skew.

4.4 Summary

Drought was characterized by three statistics, drought severity, SL’

drought duration, D_ and drought intensity, ML' The likely values of these

L
statistics can be derived if the truncation level is defined and if a probabil-

ity model for the streamflow process is properly inferred from observations.

Two methods for deriving the likely values of drought statisties were
described. The first method, by Sen (1976), calculates exactly the likely
drought durations by integrating a joint conditional probability distribution
(i.e., assuming a joint normal distribution) for annual streamflow. The second
method utilized Monte Carlo simulation, a numerical technique, to solve the
same problem and to derive the likely values of drought severity. The

equivalence between the methods was demonstrated.

Again, the fact that Monte Carlo simulation is a numerical technique for

integrating complex probability density functions is emphasized. Although
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this technique has been referred to in the past as streamflow "generation",
the above example clearly demonstrates that the true interest is in evaluating
a conditional probability with Monte Carlo simulation. The advantage in using
Monte Carlo techniques is apparent when the engineering problem is complex and
explicit evaluation of the conditional probabilities is not possible, as

explained in Section 3.8.
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SECTION 5

Evaluation of the Autoregressive Model

5.1 Introduction

The stochastic streamflow model discussed to this point, for example
purposes, is the lag-one autoregressive model. 1In Section 3 the discussion
focused on how to implement this model and the trade-offs in using annual vs.
season models. 1In this section an evaluation is made of the autoregressive
model in light of past criticism of the model, and more recently, support of

this model.

The reason that doubt has been cast on this model is the observation of
long-term persistence in streamflow records. For this reason, many stochastic

models have been proposed which better account for this observation.
Consequently, the discussion first focuses on defining persistence and its

implications for stochastic models. Secondly, the perceived inadequacy of the

autoregressive model due to persistence is described. Finally, an evaluation

of the autoregressive model is given, considering more recent research which

supports its use in light of the parameter uncertainty issue.

5.2 Persistence

5.2.1 Introduction

Drought is perceived when streamflow volumes remain below some expected

level, previously defined as the truncation level (e.g., the mean annual
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streamflow). Thus the important question to be answered in modeling drought is
given that the previous periods flow is below the truncation level, how likely
is it that the current periods flow is going to be below the truncation level?
This question can be answered if the serial dependence between successive
periods of flow is known, i.e., if the correlogram is known. Remember that

the correlogram is a plot of the serial correlation coefficient versus the
period lag and indicates the degree of dependence of current flows on past

flows.

The number of lags to include in a probability model, or the amount of
serial dependence, may seem to be a simple matter based on analysis of the
correlogram. To the contrary, this has turned out to be a controversial

subject when modeling stochastic processes in hydrology.

The reason for this is the observation of persistence in hydrologic
records. Persistence occurs when a great deal of serial dependence is
observed in the hydrologic record. This esgentially means the correlogram
does not approach zero in a '"reasonable"” number of lags. 1In this subsection,
the discussion focuses on how this phenomenon was discovered, its physical

interpretation, and its impact on probability models for drought analysis.

5.2.2 Definition

The observation that hydrologic extremes are preceded or followed by the
same is generally referred to as persistance in hydrologic time series,
sometimes referred to as the Hurst phenomena (Hurst, 1951). The purpose of
this section is to derive a parameter, known as the Hurst coefficient, which

indicates the degree of persistence in streamflow. This parameter can then be
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used to evaluate drought potential.

As an example, consider the calculation of the Hurst coefficient for the
annual streamflow volumes of the West Branch of the Oswegatchie River (Table
2.1) shown in Table 5.1. The calculation is based on analyzing the mass curve
(Rippl diagram) of demand and supply in Figure 5.1 (for an alternative approach
see Wallis and Matalas, 1970). The mass curve analysis performed here differs
from that described in Section 4. 1In this instance, the analysis determines
the reservoir storage needed to supply water under the worst drought conditions
and store water during the maximum flood without overtopping the dam. 1In
Section 4, the reservoir storage determined by mass curve analysis only

satisfied drought conditions.

To calculate the Hurst coefficient, assume that the demand is equal to the
average yearly streamflow, define the cumulative departures from the mean flow
or demand as:

n
S.*=8 -k( ¥ x,) =8, -kx (5.1)

where: 8 * = cumulative departures from mean flow

k

Sk = cumulative inflow at the end of the kth year
x = mean flow

x, = observed annual flow

n = number of observation

Define the range R (Figure 5.2) as the difference between the maxium and
minimum values of Sk' R then would be the maximum reservoir capacity needed

to supply a constant outflow x without overtopping the dam, given the
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historical inflow. (Note: in practice, reservoirs are not designed this
large. The reference to reservoir storage is a convenient artifice for

calculating the Hurst coefficients). Let the adjusted range be defined as:

R = R/s (5.2)
n n

where: R, = the adjusted range

Sp = the standard deviation of the observed flows for a record
length of n years

R = range, difference between the maximum and minimum values
of Sy
Hurst then defined the relation:
Rp = (n/2)H (5.3)
where: H = the Hurst coefficient
The coefficient can be determined by taking the logarithm of equation (5.3):

log (Rn)

log (n/2) ~ i -8

The results of Table 5.1 give H = .76. The larger the value of the Hurst
coefficient the greater the level of persistence in the streamflow record.
Typically, the range of the Hurst coefficient is 0.5 < H < 0.9. Values of H

greater than 0.7 demonstrate a high level of persistence.

5.2.3 Physical Interpretation

The physical interpretation of long-term persistence has caused a great
deal of discussion because of its relationship with system memory (see Section
2.4.6). One would reasonably expect that the greater the system memory the
higher the level of observed persistence. Consequently, streamflow records

which exhibit long-term dependence, correlograms which approach zero at
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Table 5.1 Calculation of Hurst Coefficient (Volume in acre-feet)

YEAR ACUMULATIVE TcoMOLATIVE MINIMOM MAXIMUM RANGE MAXIMUM
STREAMFLOW DEPARTURE DEPARTURE DEPARTURE RANGE
1917 338.1 ~34.5 -34.5 0.0 34.5 34.5
1918 730.4 ~14.8 -34.5 0.0 34.5 34.5
1919 1136.86 18,8 -34.5 18.8 53.3 53.3
19820 1487.2 -3.2 -34.5 18.8 53.3 53.3
1921 1848.5 ~-14.5 -34.5 18.8 53.3 53.3
1922 2262.6 27.0 -34.5 27.0 61.5 61.5
1923 2518.2 -80.0 -90.0 27.0 117.0 117.0
1924 2927.6 -53.2 -90.0 27.0 117.0 117.0
1925 3327.9 -25.5 -90.0 27.0 117.0 117.0
1926 3777.5 51.5 -90.0 51.5 141.5% 141.5
1927 4125.7 27.1 -90.0 51.5 141.5 141.5
1928 4660.1 188.9 -90.0 188.9 278.9 278.9
1928 5123.4 279.6 -90.0 279.6 369.6 369.6
1930 5576.6 360.2 -90.0 360.2 450.2 450,2
1931 5826.3 237.3 -90.0 360.2 450.2 450.2
1932 6241.6 280.0 -50.0 360.2 450.2 450.2
1933 6596.3 262.1 -90.0 360.2 450.2 450.2
1934 6857.7 150.8 ~90.0 360.2 450.2 450,.2
1835 7221.1 141.7 -30.0 360.2 450.2 450.2
1936 7547.7 95.7 -90.0 360.2 450.2 450.2
1937 7869.1 144.5 -90.0 360.2 450.2 450,.2
1838 8370.2 172.9 -90.0 360.2 450.2 450.2
1939 8683.,7 113.8 . -90.0 360.2 450.2 450.2
1940 §971.8 29.4 -90.0 360,2 450.2 450.2
1941 9212.9 -102.1 ~102.1 360.2 462.3 462.3
1942 9548.8 -138.8 -138.8 360.2 489.,0 4939.0
15943 is81 .1 -73.2 -138 .38 30,7 499.) 489.0
1944 102%6.9 ~-135.9 -138.8 360.2 499.0 499.0
1945 10665.4 -140.0 -140.0 360.2 500.2 500.2
194¢ 11045.5 -132.5 -140.0 360.2 500.2 500.2
1947 11650.0 99,4 -140.0 360.2 500.2 500.2.
1948 11991.2 67.9 -140.0 360.2 500.2 500.2
1949 12325.7 259.8 -140.0 360.2 500.2 500.2
1950 12662.3 -6.1 -140.0 360.2 500.2 500.2
1851 13054.7 13.7 -140.0 360.2 500.2 500.2
1952 13361.8 -51.8 -140.0 360.2 500.2 500.2
1953 13687.6 -98.7 -140.90 360.2 500.2 500.2
1954 14129.9 -28.9 -140.0 360.2 500.2 500.2
1955 14536.1 4.6 -140.0 360.2 500.2 500.2
1856 14869.3 ~-34.,7 -140.0 360.2 500.2 500.2
1957 15169.7 -106.9 -140.0 360.2 500.2 500.2
1958 15533.2 -116.1 -140.0 360.2 500.2 500.2
19859 15886.5 ~135.4 ~140.0 360.2 500.2 500.2
1960 16300.3 -94,1 -140.0 360.2 500.2 ) 500.2
1961 16587.0 -180.1 -180.1 360.2 540.2 540.2
1962 16941.7 -197.9 -197.9 360.2 558.1 558.1
1963 17261.0 -251.3 -251.3 360.2 511.4 611.4
1964 17531.7 -353.,1 -353.1 360.2 713.3 713.3
1965 17778.7 -478.8 -478.8 360.2 839.0 839.0
1966 18099.4 -530.6 -530.6 360.2 890.8 890.8
1967 18399.,2 -603.5 ~603.5 360.2 963.7 963.7
1968 18706.2 -669.0 -669.0 360.2 1028.2 1029.2
1969 19116.0 -631.9 -669.0 360.2 1029.2 1029.2
1870 19426.,4 ~-693.9 ~-693.9 360.2 1054.1 1054.1
1871 19832.7 -660.3 -693.9 360.2 1054.1 1054.1
1872 20225,1 -636.6 -683.9 360.2 1054.1 1054.1
1873 20680.1 -558.2 -683.9 360.2 1054.1 1054.1
1974 21107.9 -503.0 ~-693.9 350.2 1054.1 1054.1
1875 21480.7 ¢ ~502.7 ~-693.9 360.2 1054.1 1054.1
1976 22044.8 -311.2 -693.9 360.2 1054.1 1054.1
1977 22487.2 -241.5 -693.9 360.2 1054.1 1054.1
1978 22850,5 -150.8 -693.8 360.2 1054.1 1054.1
1979 23361.7 -112.1 -693.9 360.2 1054.1 1054.1
1980 23698.6 -147.9 -693.9 360.2 1054.1 1054.1
1981 24219.1 0.0 -693.9 360.2 1054.1 1054.1

* Cumulative annual streamflow in acre-feet

t Departure from sample mean annual flow

x=sample mean annual flow=372.6 s=sample standard deviation=74.8
H=Hurst coefficient=log(R)/log(N/2)=1log(1054.1) /log(65/2)=.76
where R=Maximum Range, N=Number of Data Years
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relatively long lags, should demonstrate high levels of persistence. Thus,
probabilistic models which use the observed correlogram as a means of
calculating the conditional probability of a drought should correctly account

for persistance in the streamflow record. Unfortunately, this is not true.

Mathematicians and statisticians have consistently shown that the Hurst
coefficient has a value H = 0.5 for any stationary process with finite system
memory (Klemes, 1974; Haan, 1977) as the number of observations approach
infinity. Obviously, this is in direct contradiction of Hurst's findings that
H > 0.5.

Further, Mandlebrot and Van Ness (1968) and Mandebrot and Wallis (1969)
produced probabilistic models which produced H > .5; but required that the
system have infinite memory. The implication is that the correlogram diverges
even at infinite lag, i.e., the lagged serial correlation coefficient is

always greater than zero!

There is a problem because there is no identifiable watershed process
which is endowed with infinite memory. However, researchers have suggested
that atmospheric processes may exhibit long-term memory. The high level of
persistence seen in streamflow records may be due to this atmospheric effect.
The actual mechanisms that would account for this phenomena has yet to be
identified. Certainly, long-term groundwater storage, which is a physically
plausible explanation for serial correlation, does not endow a watershed with
infinite memory for past meteorologic events. Consequently, the argument for

a process with infinite memory is less than conclusive.

Klemes (1974) clarified the situation by noting that the ability to fit a
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model (probabilistic or deterministic ) to data only mimics observed phenomena,
but does not necessarily explain the nature of the processes which cause them.
In the above reference, Klemes proposed a number of alternatives to the
infinite memory explanation of the Hurst phenomena. In one of these, the
stationarity constraint was relaxed and a system was assumed to have zero
memory (no serial dependence) and a mean (average) value that fluctuated with

time. Klemes demonstrated this type of model was capable of producing H > 0.5.

The above argument demonstrates the danger of inferring physical properties
of a watershed from statistical analyses alone. The use of H in a statistical
analysis of drought is important from an operational viewpoint because it
indicates the potential severity of droughts. However, the "H" statistic does

not explain the hydrometeorologic process behind the drought.

5.3 Model Comparisons

Criticism of the autoregressive model in the past has been that it is
unable to model long-term persistence. The reason for this is that the
autoregressive model is a "finite" memory model, that is there are a finite
number of lagged correlation coefficients preserved in the model. Referring
to the previous section a finite memory implies asymptotically (e.g., as the
number of generated flows becomes large) that the Hurst coefficient, H = 0.5.
Consequently, this model would underpredict the drought potential of a stream

which exhibited long-term persistence, H > 0.5.
The inadequacy of the autoregressive model caused a great number of
alternative models to be proposed which could simulate long-term persistence

(see Kottegoda, 1980). However, these models present a disadvantage in that
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they are much more difficult to use than the autoregressive model, particularly

in multistation analysis.

More recently, research has indicated that the autoregressive model is
more appropriate for use in water resources analysis in general, and in
drought analysis in particular, than had previously been thought in the past.
There are two reasons for this change of perspective. First, although the
autoregressive model produces Hurst coefficient's, H = 0.5, asymptotically,
for finite record lengths an H > 0.5 is produced. This is particularly true
when employing an annual model with multiple lags. A seasonal autoregressive
model will have greater difficulty in producing large H, unless the
corresponding annual statistics are preserved through a disaggregation scheme
(see Section 3.7 and Salas et. al, 1980, Chapter 9). Second the efficacy of
using high powered mathematical models as alternatives to the autoregressive
model is highly suspect when it is difficult to obtain reliable estimates of

the model parameters such as the serial correlation coefficients and H.

Bowles et. al. (1980) investigated the range of applicability of the lag
two autoregressive model (AR) and four other more advanced stochastic models
(autoregressive moving average (ARMA), broken line (BKL), fast fractional
Gaussian noise (FFGN) and the ARMA-markov model (AMAK)) based on a range of
criteria. The applicability was determined based on a water supply study of

four streams in Utah.

The models were evaluated based on the following range of criteria:

(1) Ability to preserve annual persistence statistics (the Hurst

coefficient and serial correlation) and the run properties of the
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seasonal statistics (such as number of droughts per year).

(2) Cost and ease of model use.

(3) Magnitude of economic regret associated with drought related losses
(the economic damage associated with flows generated by each model

were compared).

(4) A comparison of reservoir capacity and critical drought design
parameters (reservoir design capacities were determined based on
specified yield requirements from generated flows of each model. The

critical drought parameter evaluated was the drought magnitude, HL).

Criteria (1), (3) and (4) are related. The expectation is that the models that
preserve long-term persistence should also produce the worst droughts and thus
the largest economic regret (3) and the most conservative reservoir capacity

(4).

The results of the study indicated the following: Criteria (2), the
AR(2), ARMA and AMAK were much less costly to run then the FFGN and BKL.
Implied in the conclusions is that the parameter estimation for the AR(2) was
easiest. Criteria (1) indicated that all models except the AR(2) model are
effective in preserving the Hurst coefficient, the ARMA model being most
effective. All models seemed to be equally effective in preserving the
expected number of droughts per year. Criteria (3) indicated that use of the
BKL model minimized the expected agricultural damage. This is an interesting
result since the BKL model was judged under criteria (1) to be inferior to the

ARMA model in preserving long-term persistence. Based on this result, the
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authors conclude that, pg. 59, "the objective of preserving the persistence
statistics is not compatible with the objective of minimizing economic regret
for the study streams." Criteria (4) indicates that the ARMA and AMAK were the
most conservative in estimating the required reservoir capacity, followed by
the AR(2) model and then the FFGN and BKL models. All models produced drought

magnitudes, M , considerably larger than the worst historical drought.

L
As a result of this study, the authors developed a model choice strategy.
The strategy is to use criteria (1) as the most important with (2) and (3)
being secondary considerations. Criteria (3) is relegated to secondary
consideration because, pg. 60, "economic regret will vary so much for different
uses of generated sequences that is not possible to use it in a generalized
choice strategy."” Using criteria (1), the preservation of persistence
parameters as the primary strategy, the authors proposed (see Figure 5.3)
regions based on the lag-one serial correlation coefficient and the Hurst
coefficient where various types of models are acceptable. Based on this
figure, the autoregressive lag-one or lag-two models are acceptable for serial

correlations less than 0.6 and Hurst coefficients less than 0.7.

Certainly the Bowles et. al. study demonstrates that an AR model is able to
produce generated sequences with useful Hurst coefficients. However, caution
should be used in interpreting these results. The study is based on only four
streams in a relatively small region. More importantly, the study does not

address the problem of parameter uncertainty on model choice.
Past studies have shown that there is a great deal of uncertainty in
estimating the correlation and Hurst coefficients. Rodriguez-Iturbe (1969)

examined the sampling variance of the mean, standard deviation and lag-one
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serial correlation coefficient assuming a linear, lag-one serial dependence
between annual streamflows. He concluded that sampling errors are extremely
high for all three variables for record lengths less than 40-60 years. Further
he adds (page 1421),

"... that in respect to py, [the lag-one serial correlation coefficient]
instability is the rule rather than the exception, even for records much

longer than normally found."

The estimates of the mean and standard deviation tend to be significantly more

reliable.

The sampling properties of the Hurst coefficient are also notoriously poor.
Wallis and O'Connell (1973) conclude "For many regions of the world there is
entirely insufficient hydrological data to make a reliable estimate of long-
term persistence."” In fact, these researchers claim that for normally
available streamflow records it would be difficult to judge if persistence
exists at all (e.g., H = .5 or H # .5). Considering these findings, it
seems contradictory to judge a model based on its ability to preserve observed
Hurst and correlation coefficients when these parameters are very difficult to

estimate.

The importance of considering parameter and "intrinsic" uncertainty is
choosing between stochastic models is addressed by Klemes et. al. (1981).
They looked at parameter uncertainty by first comparing estimated reliability
of reservoir performance based on long memory (ARMA) and short memory (AR)
models. Second, reservoir reliability was investigated with a zero memory
(the serial correlation set equal to zero) model. Only in this case, the
parameters of the model, the streamflow mean and standard deviation, were

varied based on their sampling variance (see equation 2.11). The conclusion
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was that the difference between reservoir reliability* derived from a
comparison of long and short memory flow models (about 3% greater with the
long memory model) was insignificant compared to the 20% variability in the
estimate of reservoir reliability due to model and parameter uncertainty.

Consequently, parameter uncertainty tends to make the model choice academic.

Of more importance is the intrinsic uncertainty in defining future
conditions. In the case of a reservoir, these researchers point out that
social and economic changes during the project life of a reservoir are likely
to introduce error into any estimates of reservoir reliability. This
uncertainty has a greater effect on the estimate of reservoir performance

reliability then does parameter uncertainty.

Consequently, from Klemes' et. al. point of view the advantage of using
long memory flow models instead of an autoregressive models is marginal at
best. Quoting, pg. 750, "To summarize, the replacement of a short-memory
streamflow model with a long-memory model amounts to the incorporation of a
small safety factor into the reservoir performance reliability. However, in
most practical cases this factor will be much smaller than the accuracy with
which the performance reliability can be assessed." Based on this conclusion,
the model selection criteria given by Bowles et. al. seem to be to restrictive

and that the AR model is more widely applicable than Figure 5.3 indicates.

*Three types of reservoir reliability were investigated. In this part of the
analysis, quantity based reliability was investigated. This is the actual
amount of water supplied to the consumer expressed as a percentage of the
total demand over the period of simulation.
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5.4 Summary

In the opinion of many researchers, the observation of long-term
persistence in streamflow records invalidates the use of the autoregressive
model. Long term persistence is characterized by a Hurst coefficient that
exceeds 0.5. Researchers have been able to demonstrate that for any stationary
probability model, including the autoregressive model, the derived Hurst
coefficient is equal 0.5. Consequently, the autoregressive model was discarded
in favor of more sophisticated models which are able to better model observed

persistence.

However, more recently, the significance of long term persistence has been
questioned because of the parameter uncertainty issue. Long term persistence
can be equated with extremely long system memory, or equivalently, a correlo-
gram that diverges (does not approach zero at long lags). Unfortunately,
estimates of the lag-one serial correlation coefficient based on existing
record lengths of 40 to 60 years has been shown to be highly uncertain.
Consequently, estimation of serial correlations at longer lags, which is
necessary to characterize long term persistence, must be even more uncertain.
Thus it probably does not make sense to propose a model more sophisticated

than an autoregressive model if its parameters are highly unreliable.

Another reason for some skepticism is the absence of a physical mechanism
that endows a watershed with the "infinite memory" needed to account for long
term perisistence. Although atmospheric processes have been suggested, the

actual physical mechanism has not been identified.

The autoregressive model was found to be more valid than research has
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indicated in the past. The reason for this is not only the effect of parameter
uncertainty in choosing a model but the uncertainty intrinsic to the long term
planning problem. The intrinsic uncertainty arises because the demands on a
water resources project are very difficult to forecast over its lifetime (say
50-years). Consequently, the autoregressive model may very well be as

sophisticated a model as needed given the intrinsic uncertainty involved in

modeling demand.
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Section 6

Concluding Remarks

There is an enormous volume of research devoted to the development and use
of stochastic hydrologic models. If stochastic models include the probability
models used in flood frequency analysis then at least some of this literature
has been of some relevance to the practicing engineer. However, the
application of stochastic models which produce synthetic streamflows has been
of minor importance. This must be very disappointing to the research
hydrologist considering the enormous amount of research effort devoted to

stochastic model development.

Stochastic models do not receive widespread attention from the practicing
hydrologist because these models are not well understood and there is some
question as to how the models should be used. The reason that these models
are not well understood is probably due to the jargon of time series analysis
which permeates the literature on stochastic hydrology. However, this jargon
can be dispensed with when the relationship between frequency analysis, which
is understood by the practicing engineer, and stochastic streamflow models is

recognized.

The relationship exists because in frequency analysis, streamflow peak
discharge, for example, is modeled as an independent random variable and
stochastic streamflow models represent streamflow volume as a dependent random
variable. The link between the two is the incorporation of dependence to the
description of random variables. Practically speaking, this is done by using
linear regression to ascertain the degree of linear dependence between random

variables. Thus, the combination of the probability models of independent
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random variables used in flood frequency analysis and the modeling of
dependence with linear regression results in a stochastic hydrologic model,
namely the autoregressive model. Consequently, with addition of one simple
concept, regression analysis, the engineer can see that stochastic models are

not much different than the familiar techniques in frequency analysis.

The utilization of stochastic methods in practice is less easily addressed
due to the nature of the prediction problem the hydrologist is trying to
solve. The prediction problem generally involves estimating the likelihood of
severe droughts or floods over the lifetime of a project given a relatively
short historic record (i.e., a historic record that has length on the order of
the useful life of the project being built). Obviously, there is a great deal
of uncertainty in any prediction made under these conditions. This uncertainty
is reflected in the uncertain estimates of the parameters in stochastic models
which in turn leads to a small level of confidence in the estimates of likely
levels of drought or high flow periods. Thus one might wonder what use, if

any, that these stochastic models may have for the practicing hydrologist.

Stochastic models are useful because they point ocut the effect that
variability in the hydrologic record can have on engineering design. Returning
to the single reservoir design problem of Section 3.6, the variability in
reservoir design capacity based on a probability model of the reservoir inflows
(a lag-one autoregressive model) is extreme as can be seen from Figure 3.6.
This exercise points out the need to modify a design based on the historic
record by some type of safety factor. The magnitude of this safety factor may
be based on engineering judgement or on simulations with stochastic model
which produce droughts that are more severe than contained in the historic

record. However, selection of a safety factor based on engineering judgement
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is probably as valid as that derived by using a stochastic model given the

uncertainties involved in the prediction problem.

The true value of stochastic methods results from the simulation approach
to analyzing complex water resource systems. Since the stochastic models can
be used to generate conditions as severe or more severe than the historic
record, simulations using these models demonstrate the operational robustness
of the water resource system under both severe wet and dry conditions. This
is a convenient method of investigating the reliability of the system,
considering that severe conditions generated by the stochastic model represent

some safety factor.
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