
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Hydrologic Engineering Center
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Hydrologic Modeling System
HEC-HMS

Implementing the Program
Interface in Alternate Languages

March 2007

Approved for Public Release – Distribution Unlimited

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Introduction

Version 3 of the Hydrologic Modeling System (HEC-HMS) was designed to operate
independent of regional and language settings on the computer. The internal logic of the
program does not make any assumptions about which language is used to display
information to the user or receive input. Such tasks as number formatting, calendar
dates, comparing the names of components, and sorting lists of components are carried
out using appropriate local conventions. This method of designing the program is called
internationalization. It means that the program can operate successfully in any country
for which such conventions have been established.

The program is delivered with textual information in the English language. This
information is used to fill the various parts of the interface such as window titles, labels,
tooltips, and button names. It is also used to display note, warning, or error messages
when necessary. The inclusion of textual information for a specific language is called
localization. While HEC is not currently planning to provide localization for languages
other than English, it is possible for users to develop their own localizations. This
document describes how to perform localization of the textual information required by the
program. All text in the program interface can be localized except for legal notices about
the terms and conditions of usage, and certain contact information.

Locales

A locale is used to describe a specific local convention and includes both a county and a
language. Some languages are only spoken in a single country. For example, Japanese
is only associated with the country of Japan. Other languages are spoken in multiple
countries. For example, Spanish is spoken in Spain and most of the countries in Central
and South America as well. Some countries have multiple languages. For example, both
English and French are spoken in Canada. In general, there is a locale for each official
language in a country.

A locale is identified by two parts: the language first and the country second. Each part
uses a two-letter code with the language code in lower case and the country code
capitalized. For example, the code for English in the United States is "en_US".
Language and country codes have been defined by the International Standards
Organization. The definition of language codes is called ISO 639 and the definition of
country codes is called ISO 3166.

Locales have been established for all countries and languages in the world. However,
only some locales are compatible with the internationalization procedures used to
develop the program. Appendix A lists the locales for which localization can be
accomplished with a very high probability of success. Appendix B lists the locales for
which localization should be successful, but problems may be encountered.

Interface Bundles

The textual information for the interface is organized into three files; each file is called a
resource bundle. One file is used for textual information required for basin model
component editors, global editors, and other editors or windows related to basin model
components. A second file is used for information used for meteorologic model
components. A third file holds information for the project, time-series data, paired data,
grid data, and other remaining components. The default resource bundles are stored
where the program is installed, for example:

C:\Program Files\HEC\HEC-HMS\3.0.0\ui

1

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

The files are in simple text format. Strictly speaking, the information in each file uses the
UNICODE specification system. However, this is not obvious by looking at the files. The
portion of the UNICODE specification necessary for the English alphabet matches the
ASCII system which is much more recognizable. While the ASCII system is capable of
displaying simple letters, it lacks the ability to display many non-English alphabets. One
aspect missing from ASCII is diacritical marks such as the grave (for example dignità)
used in several languages including Italian. ASCII also does not have the ability to
display complex scripts required in writing systems such as Chinese or Devanagari. The
UNICODE system contains a unique identifier for 96,477 different characters, symbols,
and marks. Where possible, the UNICODE identifier is equivalent to ASCII. This allows
the resource bundles to be very simple for the English localization, but able to use other
letters, marks, or writing systems when necessary.

Each piece of information required for the interface is stored as one line in a resource
bundle. The line begins with the identifier used by the program to locate a specific
resource item. The text that should be used in place of the identifier follows the equal
sign. Following are some sample lines from a resource bundle:

Element_BasinName_L=Basin Name:
Element_BasinName_TT=Basin Model Name
Element_Name_L=Element Name:
Element_Name_TT=Hydrologic Element Name
Element_Description_L=Description:
Element_Description_TT=Element Description

These example lines are used for hydrologic element component editors such as the
subbasin element editor. The program will label the name of the basin model with
whatever text follows the equal sign of the first resource item. Specifically, the program
requests the identifier Element_BasinName_L from the resource bundle and Basin
Name: is returned for display in the interface. The result is the component editor shown
in Figure 1.

Figure 1. Subbasin component editor where the text has been loaded from the

resource bundle. Notice the tooltip for the element description.

Several conventions are used throughout the resource bundles. The beginning of the
identifier is generally the same for all textual information in a menu, component editor, or
window. All of the resources for a particular component are stored together. A label
usually ends with a capital letter "L" while the tooltip for the label ends with the letters
"TT". Any units for a label are automatically added by the program after retrieving the

2

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

resource item from the resource bundle. Finally, resource items that may need to be
singular or plural will have two entries in the resource bundle, one for each case.

In some cases the text information for a particular resource item must include special
characters. A line break may be needed for information that is to be shown on multiple
lines. A line break is represented as "\n". In general you should not use a line break in a
resource item unless the default bundles that are part of the installation also use a line
break. While it is acceptable to include multiple, sequential spaces in a resource item,
tab characters should not be used. Finally, UNICODE characters outside the normal
ASCII range will use a either a four-digit or six-digit hexadecimal code. For example, the
letter "ĝ" would be represented in the resource item as "\u011d". For some writing
systems such as Japanese, it can be expected that virtually all resource information will
consist of UNICODE characters.

Message System Bundles

The textual information used for issuing note, warning, and error messages is organized
into three resource bundles. One bundle includes all of the messages that can be
generated by the basin model and its components, principally the hydrologic elements. A
second bundle holds the messages issued by the meteorologic model. The last bundle
contains all of the remaining messages. The default resource bundles are stored in the
same directory as the interface resource bundles. They use the same UNICODE
specification as discussed earlier.

Each message resource is stored as one line in a resource bundle. The line begins with
a unique number to identify the resource item. The number is followed by an equal sign,
and then the message text. Following are some sample lines from a resource bundle:

40220=No time of concentration set for subbasin \"{0}\".
40221=Invalid time of concentration for subbasin \"{0}\".
40222=No storage coefficient set for subbasin \"{0}\".
40223=Invalid storage coefficient for subbasin \"{0}\".

These messages are used when the parameters are checked for the Clark transform
method. When the parameter check fails, the program retrieves the correct message and
displays it to the user in the message window at the bottom of the main program window.

Messages often include specific information about when something occurred, a value that
was out of range, or the name of the component where the error happened. Place
holders are used in a message resource item for these items. The program retrieves the
message from the resource bundle and then substitutes the correct, specific information
into the place holders. In the example lines above, the specific information is the name of
the subbasin where the parameter check failed. There may be no place holders, one, or
several in a particular message. Each place holder is composed of curly braces and a
number indicating the first holder, second, etc.

By convention, named components in a message are enclosed in double quotes.
Because a quotation mark is a special character, there must be a back slash before it.
Other special characters such as line breaks and UNICODE characters may also be
included.

File Conventions and Installation

The program uses a very specific file naming convention for the resource bundles. This
convention enables the program to load the correct resource bundles for the locale
specified on the computer. The locale is set in the regional or language settings of the

3

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

computer, depending on which operating system you use. Resource bundles for
alternate languages must begin with the same filename used for the default bundles
included in the installation. The alternate bundles must then append to the filename an
underscore character and the language code. Finally, a second underscore and the
country code are appended after the language code. The following lines show a default
resource bundle, along with a bundle for French, and a bundle for French in France:

BasinInterfaceResources.properties
BasinInterfaceResources_fr.properties
BasinInterfaceResources_fr_FR.properties

Alternate language resource bundles should be placed in the same directory as the
default bundles. The program will automatically determine which files to use when it
starts based on the locale setting of the computer. If the locale setting changes while the
program is running, you will need to close and restart the program to recognize the new
locale.

When the program starts, it will automatically detect the locale setting of computer. It will
then attempt to load the resource bundle for that specific locale, both the language and
country. If the bundle is missing or it is only partially complete, the program will
automatically attempt to load the resource bundle for the language that is part of the
specified locale. If the program is still not able to find all of the required resource items, it
will automatically load the default resource bundles. A partial implementation means that
some resource items are translated and placed in appropriate localization resource
bundles. A complete implementation means that all resources required by the program
can be found in the localized resource bundles.

Setting the locale is specific to the operating system. On computers using Microsoft
Windows®, the locale is set in the Control Panel under Regional and Language Options.
An example is shown in Figure 2. The locale is selected from the list that shows
language and country combinations.

Figure 2. Selecting the locale on a computer using Microsoft Windows®.

4

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Supported Fonts

Most computers include fonts as part of the initial operating system setup. These fonts
usually include the basic Latin fonts and any additional fonts necessary for the locale
where the setup is performed. For example, a computer setup in the United States is
unlikely to have the fonts necessary to display the Thai language. However, a computer
setup in Thailand will include the necessary fonts. It is possible to add additional fonts at
a later time, either manually or as part of installing a new application.

HEC-HMS does not include any fonts when it is installed. It relies on the operating
system to provide the fonts it needs and this will be sufficient if the default resource
bundles. Depending on the locale you intend to implement, you may need to make sure
that appropriate fonts are present on the computer.

Translation Procedures

The following steps describe the best procedure for implementing the interface in an
alternate language.

1. Make a copy of the six resource bundle files. The files are distributed as part of the
program installation package. Do not delete or rename the original resource bundles
distributed with HEC-HMS; just make the necessary copies. The copies will likely
have "read only" file property so you must change them to "read write" in order to
continue to the next step.

2. Look up the appropriate code for your locale in Appendix A or Appendix B.

3. Rename the copied files with the correct locale code appended. The code is
appended at the end of the filename while the file extension remains unchanged. For
example, to produce a resource bundle for German in Austria, the default file:

BasinInterfaceResources.properties

should be copied and renamed as:

BasinInterfaceResources_de_AT.properties

4. Open the renamed resource bundle in an appropriate file editor program. The
program should be able to save the resource file using the UTF-8 or UTF-16
character encoding specification. Your file editor may support many different
formats. It is very important to save the file using the UTF-8 or UTF-16 format. HEC-
HMS may not work correctly if other file formats are used.

5. Edit each resource item by translating the right side of the equal sign from English to
the selected locale language. Do not change the identifier on the left side of the
equal sign. Changing the identifier will stop the program from being able to identify
resources correctly. For example, the text from the following lines:

LAM_Cond_L=Conductivity
LAM_Cond_TT=Saturated Hydraulic Conductivity

would be translated to German as "Leitfähigkeit" and "Gesättigte Hydraulische
Leitfähigkeit". The correct text for the resource bundle with UNICODE characters
would be:

LAM_Cond_L=Leitf\u00E0higkeit
LAM_Cond_TT=Ges\u00E0ttigte Hydraulische Leitf\u00E0higkeit

5

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

6. Delete any lines from the copied resource bundles that you do not translate. This will
allow the program to automatically load those resources from the default bundles. All
information loaded from the default bundles is displayed in English regardless of the
locale setting on the computer.

7. Place the translated resource bundles in the installation directory along with the
default bundles.

8. Start the program to see the implementation of your work.

Program Releases and Versioning

Each version of HEC-HMS is installed separately on a computer. This means that each
version is completely self-contained and does not share resources with other versions
which may also be installed. Translated resource bundles must also be installed
separately for each version of the program.

The default resource bundles may change for each new program release even though we
make every effort to keep the bundles as stable as possible. We try not to change
identifiers used to find text in the resource bundles. For example, if a menu command
uses the identifier ED_All_L to retrieve the text resource for the "Select All" command
on the "Edit" menu, we try to avoid changing the identifier to something else in a future
release version. However, identifier changes are sometimes necessary to improve
organization of the resource bundles. We also try to avoid changing the text resource
that is connected to a particular identifier. For example, we would try to avoid changing
the displayed name of the command from "Select All" to something else such as "Select
All Elements". However, sometimes we must change text resources to improve usability.

New program releases will generally require a new set of translated resource bundles.
There may be changes to identifiers or text resources. Because of new features in the
program, new resources will be added to the bundles. File comparison programs
(professional or open source) are available that can be used to show differences between
a default resource bundle for two different program releases. The comparison tool will
show resource identifiers that are only in the resource bundle from the older program
release. The resources can be safely removed from the bundle you prepare for the new
release. The tool will also show resource identifiers that are only in the bundle for the
new release. These resources are new and must be added to your translated bundle.
The tool can also show any identifiers that have changed spelling or any text resources
that have changed. Any resources that have not changed can be used in the new
resource bundle exactly as you prepared them for the old bundle.

After you have identified changes in the default resource bundles from one program
release to the next release, you can use the following steps to update your translated
bundles.

1. Start with the translated bundles you prepared for the old program release. Make a
copy for use with the new release.

2. Edit the new copy to update any resource identifiers that have changed. Update the
translated text for any identifiers where we changed the default English text.

3. Add identifiers and translated text for any new resources.

4. Finally you may distribute the update resource bundles for the new HEC-HMS
release by placing them in the appropriate installation directory.

6

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Appendix A – Fully Supported Locales

Language Country Locale ID

Arabic Saudi Arabia ar_SA

Chinese
(Simplified) China zh_CN

Chinese
(Traditional) Taiwan zh_TW

Dutch Netherlands nl_NL

English Australia en_AU

English Canada en_CA

English United Kingdom en_GB

English United States en_US

French Canada fr_CA

French France fr_FR

German Germany de_DE

Hebrew Israel iw_IL

Hindi India hi_IN

Italian Italy it_IT

Japanese Japan ja_JP

Korean South Korea ko_KR

Portuguese Brazil pt_BR

Spanish Spain es_ES

Swedish Sweden sv_SE

Thai (Western
digits) Thailand th_TH

Thai (Thai digits) Thailand th_TH_TH

7

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Appendix B – Provided But Untested Locales

Language Country Locale ID

Albanian Albania sq_AL

Arabic Algeria ar_DZ

Arabic Bahrain ar_BH

Arabic Egypt ar_EG

Arabic Iraq ar_IQ

Arabic Jordan ar_JO

Arabic Kuwait ar_KW

Arabic Lebanon ar_LB

Arabic Libya ar_LY

Arabic Morocco ar_MA

Arabic Oman ar_OM

Arabic Qatar ar_QA

Arabic Sudan ar_SD

Arabic Syria ar_SY

Arabic Tunisia ar_TN

Arabic UAE ar_AE

Arabic Yemen ar_YE

Belorussian Belorussia be_BY

Bulgarian Bulgaria bg_BG

Catalan Spain ca_ES

Chinese Hong Kong zh_HK

Croatian Croatia hr_HR

Czech Czech Republic cs_CZ

Danish Denmark da_DK

Dutch Belgium nl_BE

English India en_IN

English Ireland en_IE

English New Zealand en_NZ

English South Africa en_ZA

Estonian Estonia et_EE

Finnish Finland fi_FI

French Belgium fr_BE

French Luxembourg fr_LU

9

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Provided But Untested Locales – Continued

Language Country Locale ID

French Switzerland fr_CH

German Austria de_AT

German Luxembourg de_LU

German Switzerland de_CH

Greek Greece el_GR

Hungarian Hungary hu_HU

Icelandic Iceland is_IS

Italian Switzerland it_CH

Latvian Latvia lv_LV

Lithuanian Lithuania lt_LT

Macedonian Macedonia mk_MK

Norwegian
(Bokmål) Norway no_NO

Norwegian
(Nynorsk) Norway no_NO_NY

Polish Poland pl_PL

Portuguese Portugal pt_PT

Romanian Romania ro_RO

Russian Russia ru_RU

Slovak Slovakia sk_SK

Slovenian Slovenia sl_SI

Spanish Argentina es_AR

Spanish Bolivia es_BO

Spanish Chile es_CL

Spanish Colombia es_CO

Spanish Costa Rica es_CR

Spanish Dominican Republic es_DO

Spanish Ecuador es_EC

Spanish El Salvador es_SV

Spanish Guatemala es_GT

Spanish Honduras es_HN

Spanish Mexico es_MX

Spanish Nicaragua es_NI

Spanish Panama es_PA

10

Implementing the Program Interface in Alternate Languages
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Provided But Untested Locales – Continued

Language Country Locale ID

Spanish Paraguay es_PY

Spanish Peru es_PE

Spanish Puerto Rico es_PR

Spanish Uruguay es_UY

Spanish Venezuela es_VE

Turkish Turkey tr_TR

Ukrainian Ukraine uk_UA

Vietnamese Vietnam vi_VN

11

