

US Army Corps of Engineers Hydrologic Engineering Center

HEC-SSP Statistical Software Package

User's Manual

Version 1.1 April 2009

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188				Form Approved OMB No. 0704-0188	
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.					
1. REPORT DATE (DD-		2. REPORT TYPE		3. DATES	COVERED (From - To)
April 2009		Computer Program	m Documentation		
4. TITLE AND SUBTIT	E		54	. CONTRACT	NUMBER
Statistical Software	e Package		51	. GRANT NUM	IBER
Version 1.1			-		
6. AUTHOR(S)	Matthaw I Flami	20	50	I. PROJECT N	UMBER
Gary W. Brunner,	Matthew J. Flemm	ig	50	. TASK NUME	ER
			51	. WORK UNIT	NUMBER
7. PERFORMING ORG	ANIZATION NAME(S)	AND ADDRESS(ES)		8. PERFOR	MING ORGANIZATION REPORT NUMBER
US Army Corps of	Engineers			CPD-86	
Institute for Water	Resources				
Hydrologic Engine	ering Center (HE	C)			
609 Second Street					
Davis, CA 95616-	4687				
9. SPONSORING/MON	ITORING AGENCY NA	ME(S) AND ADDRESS	S(ES)	10. SPONSOR/ MONITOR'S ACRONYM(S)	
				11. SPONSOR/ MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION / A	VAILABILITY STATEM	FNT			
Approved for publ					
13. SUPPLEMENTARY					
 14. ABSTRACT The Hydrologic Engineering Center's Statistical Software Package (HEC-SSP) allows the user to perform statistical analyses of hydrologic data. The current version of HEC-SSP can perform flood flow frequency analysis based on Bulletin 17B, a generalized frequency analysis using any type of hydrologic data, and a volume-duration frequency analysis. Data storage and management is handled either through the use of text files (ASCII, XML), as well as the Hydrologic Engineering Center's Data Storage System (HEC-DSS). 15. SUBJECT TERMS HEC-SSP, flood frequency, statistics, Bulletin 17B, flow, stage, computer program, hydrologic data, volume-duration, 					
statistical analysis, skews	statistical analysis, data storage, reporting tools, frequency curves, confidence limits, low outliers, high outliers, regional skews				
16. SECURITY CLASS a. REPORT	b. ABSTRACT	c. THIS PAGE	17. LIMITATION OF	18. NUMBEI OF	19a. NAME OF RESPONSIBLE PERSON
U U	U U	U U	ABSTRACT	PAGES	
Ŭ	Ŭ	Ŭ	UU	214	19b. TELEPHONE NUMBER
					Standard Form 298 (Rev. 8/98

HEC-SSP Statistical Software Package

User's Manual

April 2009

US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center 609 Second Street Davis, CA 95616

(530) 756-1104 (530) 756-8250 FAX www.hec.usace.army.mil

CPD-86

Statistical Software Package, HEC-SSP Software Distribution and Availability Statement

The HEC-SSP executable code and documentation are public domain and were developed by the Hydrologic Engineering Center for the U.S. Army Corps of Engineers. The software was developed with United States Federal Government resources, and is therefore in the public domain. This software can be downloaded for free from the HEC internet site (www.hec.usace.army.mil). HEC does not provide technical support for this software to non-Corps users. However, we will respond to all documented instances of program errors. Documented errors are bugs in the software due to programming mistakes not model problems due to user-entered data.

Table of Contents

CHAPTER 1	.1-1
Introduction	.1-1
Contents	
General Philosophy of the HEC-SSP	
Overview of Program Capabilities User Interface	
Statistical Analysis Components	
Data Storage and Management	
Graphical and Tabular Output	
Overview of This Manual	.1-4
CHAPTER 2	.2-1
Installing HEC-SSP	
Contents	
Hardware and Software Requirements Installation Procedure	
To install the software onto your hard disk do the following:	
Uninstall Procedure	
CHAPTER 3	3-1
Working With HEC-SSP - An Overview	
Contents	
Starting HEC-SSP	
To Start HEC-SSP from Windows:	
Overview of the Software Layout	
Steps in Performing a Bulletin 17B Frequency Analysis Starting a New Study	
Adding a Background Map	
Importing, Entering, and Editing Data	
Performing the Bulletin 17B Flow Frequency Analysis	3-15
Viewing and Printing Results	3-16
CHAPTER 4	.4-1
Using the HEC-SSP Data Importer	.4-1
Contents	
Developing a New Data Set	
Importing Data from an HEC-DSS File Importing Data from the USGS Website	
Importing Data from an Excel Spreadsheet	
Entering Data Manually	
Importing Data from a Text File	
Metadata	
Plotting and Tabulating the Data	
CHAPTER 5	
Performing a Bulletin 17B Flow Frequency Analysis	
Contents Starting a New Analysis	
General Settings, Options, and Computations	
General Settings	
Generalized Skew	
Expected Probability Curve	5-4

Plotting Positions Time Window Modification	
Options	
Low Outlier Threshold	
Historic Period Data	
User Specified Frequency Ordinates	
Compute	
Viewing and Printing Results	
Tabular Output	
Graphical Output	
Viewing the Report File	
CHAPTER 6	
Performing a Generalized Frequency Analysis	
Contents	
Starting a New Analysis	
General Settings and Options	
General Settings	
Log Transform	
Plotting Positions	
Confidence Limits	
Time Window Modification	
Options	
Low Outlier Threshold	
Historic Period Data	
User Specified Frequency Ordinates	
Output Labeling	
Analytical Frequency Analysis	
Settings	
Distribution	
Generalized Skew	6-10
Expected Probability Curve	6-11
Compute	
Tabular Results	6-11
Plot	6-13
Graphical Frequency Analysis	6-14
Viewing and Printing Results	6-15
Tabular Output	6-15
Graphical Output	6-16
Viewing the Report File	6-18
CHAPTER 7	7-1
Performing a Volume-Duration Frequency Analysis	7-1
Contents	7-1
Starting a New Volume-Duration Frequency Analysis	7-2
General Settings and Options	
General Settings	7-3
Log Transform	7-3
Plotting Positions	
Maximum or Minimum Analysis	
Year Specification	7-5
Time Window Modification	
Options	
Flow-Durations	
User Specified Frequency Ordinates	
Output Labeling	7-9

Low Outlier Threshold	
Historic Period Data	
Duration Table	
Analytical Frequency Analysis	
Settings	
Distribution	
Expected Probability Curve	
Skew	
Compute	
Tabular Results	7-17
Plot	
Statistics	
Graphical Frequency Analysis	
Curve Input	
Plot	
Viewing and Printing Results – Volume-Duration Frequency Analysis	
Tabular Output	
Graphical Output	
Viewing the Report File	
References	A-1
Example Data Sets	B-1
Example 1: Fitting the Log-Pearson Type III Distribution	B-3
Example 2: Analysis with High Outliers	
Example 3: Testing and Adjusting for a Low Outlier	B-19
Example 4: Zero-Flood Years	B-27
Example 5: Confidence Limits and Low Threshold Discharge	B-35
Example 6: Use of Historic Data and Median Plotting Position	
Example 7: Analyzing Stage Data	
Example 8: Using User-Adjusted Statistics	
Example 9: General Frequency – Graphical Analysis	B-70
Example 10: Volume-Duration Frequency Analysis, Maximum Flows	B-77
Example 11: Volume-Duration Frequency Analysis, Minimum Flows	

Foreword

The U.S. Army Corps of Engineers' Statistical Software Package (HEC-SSP) is software that allows you to perform statistical analyses of hydrologic data.

The first official version of HEC-SSP (version 1.0) was released in August of 2008. Version 1.1 was released in April, 2009 and included improvements to data entry, results visualization and reporting, and added capability to the volume-duration frequency analysis. These new features are discussed in the user's manual and in the release notes for Version 1.1.

The HEC-SSP software was designed by Mr. Gary Brunner, Mr. Jeff Harris, Dr. Beth Faber, and Mr. Matthew Fleming. The HEC-SSP user interface was programmed by Mr. Mark Ackerman, and the computational code was programmed by Mr. Paul Ely. This manual was written by Mr. Gary Brunner and Mr. Matthew Fleming.

CHAPTER 1

Introduction

Welcome to the U.S. Army Corps of Engineers Statistical Software Package (HEC-SSP) developed by the Hydrologic Engineering Center. This software allows you to perform statistical analyses of hydrologic data. The current version of HEC-SSP can perform flood flow frequency analysis based on Bulletin 17B, "Guidelines for Determining Flood Flow Frequency" (1982), a generalized frequency analysis on not only flow data but other hydrologic data as well, and a volumeduration frequency analysis on high and low flows.

The HEC-SSP software system was developed as a part of the Hydrologic Engineering Center's "Next Generation" (NexGen) development of hydrologic engineering software. The NexGen project encompasses several aspects of hydrologic engineering, including rainfall-runoff analysis, river hydraulics, reservoir system simulation, flood damage analysis, and real-time river forecasting for reservoir operations.

This chapter discusses the general philosophy of HEC-SSP and gives a brief overview of the capabilities of the software system. An overview of this manual is also provided.

Contents

- General Philosophy of the HEC-SSP
- Overview of Program Capabilities
- Overview of This Manual

General Philosophy of the HEC-SSP

HEC-SSP is an integrated system of software, designed for interactive use in a multi-tasking environment. The system is comprised of a graphical user interface (GUI), separate statistical analysis components, data storage and management capabilities, mapping, graphics, and reporting tools.

Over a period of many years, the Hydrologic Engineering Center has supported a variety of statistical packages that perform frequency analysis and other statistical computations. Historically, the programs that received the most use within the Corps of Engineers were HEC-FFA (Flood Frequency Analysis) and STATS (Statistical Analysis of Time Series Data). FFA incorporates Bulletin 17B procedures that have been adopted by the Corps for flow frequency analysis. The STATS software package is used for statistical analysis of time series data. STATS can provide either analytical or graphical frequency analysis, specified by the user. STATS has the capability of computing monthly and annual maximum, minimum, and mean values along with computing a volume-duration analysis. Two other packages that used to receive a lot of use within the Corps of Engineers are REGFRQ (Regional Frequency Computation) and MLRP (Multiple Linear Regression Program). REGFRQ performs regional frequency analysis and MLRP is a multiple linear regression analysis tool.

The goal of HEC-SSP is to ultimately combine all of the statistical analyses capabilities of HEC-FFA, STATS, REGFRQ and MLRP. The current version of HEC-SSP supports performing flood flow frequency analyses based on Bulletin 17B Guidelines, generalized frequency analyses, and volume-duration frequency analyses. New features and additional capabilities will be added in future releases.

Overview of Program Capabilities

HEC-SSP is designed to perform statistical analyses of hydrologic data. The following is a description of the major capabilities of HEC-SSP.

User Interface

The user interacts with HEC-SSP through a graphical user interface (GUI). The main focus in the design of the interface was to make it easy to use the software, while still maintaining a high level of efficiency for the user. The interface provides for the following functions:

- File management
- Data entry, importing, and editing
- Statistical analyses
- Tabulation and graphical displays of results
- Reporting facilities

Statistical Analysis Components

<u>Flow Frequency Analysis (Bulletin 17B)</u> – This component of the software allows the user to perform annual peak flow frequency analyses. The software follows guidelines in Bulletin 17B, "Guidelines for Determining Flood Flow Frequency", by the Interagency Advisory Committee on Water Data.

<u>Generalized Frequency Analysis</u> – This component of the software allows the user to perform annual peak flow frequency analyses by various methods. Additionally the user can perform frequency analysis of variables other than peak flows, such as stage and precipitation data.

<u>Volume-Duration Frequency Analysis</u> – This component of the software allows the user to perform a volume-duration frequency analyses on daily flow data.

Data Storage and Management

Data storage is accomplished through the use of "text" files (ASCII and XML), as well as the HEC Data Storage System (HEC-DSS). User input data are stored in flat files under separate categories of study, analyses, and a data storage list. Gage data are stored in a project HEC-DSS file as time series data. Output data is predominantly stored in HEC-DSS, while a summary of the results is written to an XML file. Additionally, an analysis report file is generated whenever a computation is made. This report file is written to a standard ASCII text file.

Data management is accomplished through the user interface. The modeler is requested to enter a Name and Description for each study being developed. Once the study name is entered, a directory with that name is created, as well as a study file. Additionally a set of subdirectories is created with the following names: Bulletin17bResults, GeneralFrequencyResults, VolumeFrequencyAnalysisResults, Layouts, and Maps. As the user creates new analyses, an analysis file is created in the main project directory. The interface provides for renaming and deletion of files on a study-by-study basis.

Graphical and Tabular Output

Graphics include a map window, plots of the raw data, and frequency curve plots. The map window can be used to display background map layers. Locations of the data being analyzed can be displayed on top of the map layers. Once data are brought into HEC-SSP, they can be plotted for visual inspection. The frequency curve plots shows the results of the analyses, which include the analytically computed curve, the expected probability curve, confidence limits, and the raw data points plotted based on the selected plotting position method. Tabular output consists of tables showing the computed frequency curves, confidence limits, and summary statistics. All graphical and tabular output can be displayed on the screen, sent directly to a printer (or plotter), or passed through the Windows Clipboard to other software, such as a word-processor or spreadsheet.

A report file is available for each analysis. This report file includes the input data, preliminary results, all of the statistical tests (Low and High Outliers, Broken Record, Zero Flows Years, Incomplete Record, Regional Skews, and Historic Information), and final results. This report file is similar to the FFA output file.

Overview of This Manual

This user's manual is the primary documentation on how to use HEC-SSP. The manual is organized as follows:

- Chapters 1-2 provide an introduction and overview of HEC-SSP, as well as instructions on how to install the software.
- Chapter 3 provides an overview on how to use the HEC-SSP software in a step-by-step procedure, including a sample problem that the user can follow.
- Chapter 4 explains in detail how to enter and view data.
- Chapter 5 provides a detailed discussion on how to perform the Bulletin 17B flow frequency analysis. Additionally, this chapter describes all of the output capabilities available for displaying and printing the results.
- Chapter 6 provides a detailed discussion on how to use the generalized frequency analysis editor.
- Chapter 7 provides a detailed discussion on how to use the volume-duration frequency analysis editor.
- Appendix A contains a list of references.
- Appendix B has a series of example analyses that demonstrate the various capabilities of performing a Bulletin 17B flow frequency analysis, performing a general frequency analysis, and performing a volume-duration frequency analysis.

CHAPTER 2

Installing HEC-SSP

You install HEC-SSP using the program installation package available from HEC's web site. The setup program installs the software and the example applications. This chapter discusses the hardware and system requirements needed to use HEC-SSP, how to install the software, and how to uninstall the software.

Contents

- Hardware and Software Requirements
- Installation Procedure
- Uninstall Procedure

Hardware and Software Requirements

Before you install the HEC-SSP software, make sure that your computer has at least the minimum required hardware and software. In order to get the maximum performance from the HEC-SSP software, recommended hardware and software is shown in parentheses. This version of HEC-SSP will run on a microcomputer that has the following:

- Intel Based PC or compatible machine with Pentium processor or higher (a Pentium 4 or higher is recommended).
- A hard disk with at least 100 megabytes of free space
- A CD-Rom drive (or CD-R, CD-RW, DVD), if installing from a CD.
- A minimum of 512 megabytes of RAM (1 Gigabyte or more is recommended).
- A mouse.
- Color Video Display (Recommend running in 1280x1024 or higher, and as large a monitor as possible). Recommend at least a 17" monitor.
- Microsoft Windows NT 4.0, 2000, XP, or Vista (or later versions).

Installation Procedure

Installation of the HEC-SSP software is accomplished through the use of the Setup program.

To install the software onto your hard disk do the following:

- 1. Insert the HEC-SSP CD into your CD drive (or download the software from our web site: www.hec.usace.army.mil).
- 2. The setup program should run automatically if installing from a CD. When downloading from the web page you will need to save the setup file in a temporary directory and then execute the "HEC-SSP_11_Setup.exe" file to run the setup program.
- 3. If the setup program does not automatically run from the CD, use the windows explorer to start the HEC-SSP_11_Setup.exe program on the CD.
- 4. Follow the setup instructions on the screen.

The setup program automatically creates a program group called HEC. This program group will be listed under the Programs menu, which is under the Start menu. The HEC-SSP program icon will be contained within the HEC program group, within the HEC-SSP subdirectory. The user can request that a shortcut icon for HEC-SSP be created on the desktop. If installed in the default directory, the HEC-SSP executable can be found in the C:\Program Files\HEC\HEC-SSP\1.1 directory with the name "HEC-SSP.EXE".

The HEC-SSP User's Manual and example data sets are also installed with the software. The User's Manual can be viewed by selecting **User's Manual** from the **Help** menu. You must have Adobe Acrobat Reader to view the user's manual. This viewer can be obtained for free from the Adobe web page.

A zip file containing the example data sets described in Appendix B have been installed in the "...**\Examples**" folder within the program directory. You can install the example data sets by selecting the **Install Example Data** option from the **Help** menu. After selecting the Install Example Data menu option, a window will open for you to choose a location to install the example data sets. The program will create a subdirectory within your chosen folder called **SSP_Examples**. A project file called "SSP_EXAMPLES.ssp" will be contained in the SSP_Examples folder. You can load the test data sets by using the **Open Study** option from the File menu and then use the file chooser to select this file.

Uninstall Procedure

The HEC-SSP Setup program automatically registers the software with the Windows operating system. To uninstall the software, do the following:

- From the Start Menu select Control Panel.
- Select Add/Remove Programs from within the Control Panel folder.
- From the list of installed software, select the HEC-SSP program and press the Remove button.
- Follow the uninstall directions on the screen and the software will be removed from your hard disk.

CHAPTER 3

Working With HEC-SSP - An Overview

HEC-SSP is an integrated package of statistical analysis modules, in which the user interacts with the system through the use of a Graphical User Interface (GUI). The current version is capable of performing flow frequency analyses based on the Bulletin 17B "Guidelines for Determining Flood Flow Frequency", dated March 1982, generalized frequency analyses, and volume-duration frequency analyses. This chapter provides an overview of how a Bulletin 17B flow frequency analyses can be performed with the HEC-SSP software. General frequency and volume-duration frequency analyses can be developed in a similar manner as outlined for the Bulletin 17B analysis.

In HEC-SSP terminology, a **Study** is a set of files associated with a particular set of data and statistical analyses being performed. The files for a study are categorized as follows: study information, data list, and analysis data.

Contents

- Starting HEC-SSP
- Overview of the Software Layout
- Steps in Performing a Bulletin 17B Frequency Analysis

Starting HEC-SSP

When you run the HEC-SSP Setup program, a new program group called **HEC** and program icon called **HEC-SSP** are created. They should appear in the start menu under the section called **All Programs**. The user also has the option of creating a shortcut on the desktop. If a shortcut is created, the icon for HEC-SSP will look like the following:

Figure 3-1. The HEC-SSP Icon.

To Start HEC-SSP from Windows:

Double-click on the HEC-SSP Icon. If you do not have an HEC-SSP shortcut on the desktop, go to the Start menu and select All Programs → HEC → HEC-SSP → HEC-SSP 1.1.

Overview of the Software Layout

When you first start HEC-SSP, you will see the main window as shown in Figure 3-2, except you will not have any study data on your main window. As shown in Figure 3-2, the main window is laid out with a Menu Bar, a Tool Bar, and four window panes.

The upper right pane (which represents most of the window area) is the **Desktop Area** (Referred to as the "Desktop" from this point in the manual). This area is used for displaying maps, data editors, and analysis windows.

The upper left pane is called the **Study Explorer**. The Study Explorer acts like an explorer tree into the study. The top level of the tree is the study (Clarion River in this example). Below the study is an analyses branch, a data branch, and a map branch. Under the analyses branch, the first level is the types of analysis in the current study. Under each analysis type will be the current user-defined analyses for that type. The data branch lists all of the available data sets that have been brought into the current study. Generally, a data set represents a piece of data at a specific gage location. For example, all of the peak annual flows at a single gage would be stored as a single data set. When an analysis is created, the user selects a data set to be used for that particular analysis. The Map branch of the tree contains any maps the user has put together for the study. By default there is automatically a "Base Map" listed under the maps folder.

The lower left pane, and associated tabs, also belongs to the study explorer. This window is used to show additional information about items selected in the study explorer tree. The tabs are used to switch to different views within the study explorer window. The first tab, labeled Study, shows the explorer view of the study. The second tab, labeled Maps, lists the available maps and map layers associated with each map. The last tab, labeled Files, shows all of the files that make up the current study.

The lower right pane is called the **Message Window**. This window is used to display messages from the software as to what it is doing.

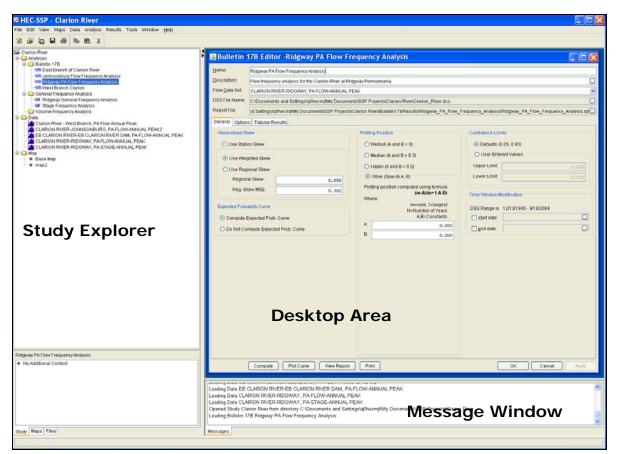


Figure 3-2. The HEC-SSP Main Window.

At the top of the HEC-SSP main window is a Menu bar with the following options:

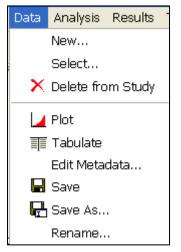
File: This menu is used for file management. Options available under the File menu include New Study, Open Study, Save Study, Save

Study As, Close Study, Study Properties, Export, Recent Studies, and Exit. The Study Properties option is used to describe the study and to set the units system. The Export option is used to export HEC-SSP results, stored in the study DSS file, to another DSS file. The Recent Studies option lists the most recently opened studies, which allows the user to quickly open a study that was recently worked on.

Edit: This menu is used for applying the Cut, Copy, and Paste clipboard features to data in editable fields and tables.

Edit	View	Maps	٢
¥	Cut	Ctrl+X	
	👌 Copy	Ctrl+C	
Ĉ	A Paste	Ctrl+V	

View: The View menu allows the user to control display of the


View	Maps	Data	Analysis	Results
	Toolbar	rs		•
~	Study Explorer			
~	Messag	jes Wir	idow	
~	Status	Windov	v	
~	Toggle Views Ctrl+T			Ctrl+T
	Save Current Layout			
	Restore Layout			
	Layout Manager			
	Set Stu	dy Disp	olay Units	•

toolbars and the study windows. The user can also toggle between viewing all of the panes or just the Main View Pane. The View menu also has options for saving the current layout (currently opened windows and their sizes and locations) and restoring a previous saved layout. The final option on the View menu is to set the study display units. This option allows the user to switch viewing output between English and metric units. **Maps**: This menu is used to set the Default Map Properties (Coordinate system, extents, etc...), define a new map, add map

layers to the study, and remove a map. Additionally, this menu has the following options available: Map Window Settings (allows the user to turn map layers on and off), Zoom To Entire Map Extents, Save Map Image, Import, and Export. The Zoom To Entire Map Extents option displays the entire set of map layers within the map window. The Save Map Image option can be used to save the current view of the map to a file.

Maps	Data	Analysis	Results	Too
	Defau	lt Map Prop	erties	
	New M	Тар		
	Add M	ap Layers.		
	Remov	/e Map Lay	ers	
	Map Window Settings			
	Zoom	To Entire M	1ap Extenl	ts
	Save N	Map Image		

Data: This menu allows the user to define a new data set, open the

metadata editor, and delete any existing data sets from the data list. Other options include opening a plot and table of the data.

Analysis: This menu is used to create the various statistical analyses available in the software. Each statistical analysis is saved as a

Analysis	Results	Tools	W
Ne	w		►
Ор	en		
🗙 De	lete from	Study	
🖬 Sa	ve		
🖶 Sa	ve As		
Re	name		
Co	mpute Ma	anager	

separate file containing the information that is pertinent to that specific analysis type. The current options under this menu item include New, Open, Delete from Study, Save, Save As, Rename, and Compute Manager. The compute manager allows the user to select one, several, or all of the analyses, and then have them all recomputed. **Results**: This menu allows the user to graph and tabulate any of the existing analyses that have been computed. Additionally, the user can request to view the report file from a computed analysis. Users must select at least one analysis in the Study Tree before selecting Graph,

Results	Tools	Window	
Graph	Graph		
Table	Table		
Report			
Summary Report			
Default Plot Line Styles			

Table, Report, or Summary Report. If more than one analysis of the same type are selected (this is accomplished by holding down the control key while clicking on the various analyses), the Graph and Summary Report options will include results from all analyses that are selected. However, when multiple analyses are selected, the Table and Report option bring up separate windows for each of the selected analyses. The Default

Plot Line Styles menu option lets the user change the default line styles applied to different data types that are plotted in a graph. For example, the user can change the default line style for high outliers so that they are displayed as black triangular data points when a plot is opened.

Tools: This menu includes HEC-DSSVue, Options, Console Output, and Memory Monitor. The HEC-DSSVue option brings up the HEC-

DSSVue program and automatically loads the current study DSS file. HEC-DSSVue is a DSS utility to tabulate, graph, edit, and enter data into DSS. The Options menu item brings up an options window that allows the user to set default HEC-SSP options.

Window: This menu includes Tile, Cascade, Next Window, Previous Window, Window Selector, and Window. All these options are used to control the appearance of the windows in the Desktop area. When

Window	Help				
T ile	T ile				
🖶 Cascade					
🕞 Ne:	xt Window	Ctrl+Tab			
🖅 Previous Window		Ctrl+Shift+Tab			
Wi	ndow Selector				
Wi	ndow	•			

more than one window is open (such as a data importer, and various analysis windows), these menu items will help the user organize the windows, or quickly navigate to a specific window. The Tile option can be used to organize all of the currently opened windows in either a vertical or horizontal tile. The Cascade option puts

one window on top of the next in a cascading fashion. The Next Window option brings the next window in the list of currently opened windows to the top. The Previous Window brings the last window that was on top back to the top. The Window Selector option brings up a pick list of the currently opened windows and allows you to select the one you want. The Window option has a sub menu list of all the opened windows and allows you to select one.

Help: This menu allows the user to open the HEC-SSP User's Manual, install example data sets, read the terms and conditions of use statement, and display the current version information about HEC-SSP.

Help	
User's Manual	
Install Example Data	
Terms and Conditions For Use About HEC-SSP	

Also on the HEC-SSP main window is a Tool Bar. The buttons on the tool bar provide quick access to the most frequently used options under the HEC-SSP File and Edit menus.

Steps in Performing a Bulletin 17B Frequency Analysis

There are five main steps in performing a Bulletin 17B flow frequency analysis with HEC-SSP. Similar steps are required when performing a generalized frequency or volume-duration analysis.

- Starting a new study
- Adding a Background Map (Optional)
- Importing, Entering, and Editing Data
- Performing the Bulletin 17B Frequency Analysis
- Viewing and Printing Results

Starting a New Study

The first step in performing a Flow Frequency analysis with HEC-SSP is to establish which directory you wish to work in and to enter a title for the new study. To start a new study, go to the **File** menu and select **New Study**. This will bring up a New Study window as shown below.

As shown in Figure 3-3, the user is required to enter a name for the study, select a directory to work in (a default location is provided), and select the desired units system. Adding a description of the study is optional. Once you have entered all the information, press the **OK** button to have the information accepted. After the **OK** button is pressed, a subdirectory will be created under the user chosen directory. The subdirectory will be labeled the same name as the user-entered study name. This study directory is where the project file, as well as other study files and directories will be located.

Additionally, a default map window will appear in the Main View Pane. However, the map window will be blank when it first opens.

🔛 Create New Study 🔀				
Study <u>N</u> ame:	Clarion River			
<u>D</u> escription:	Clarion River Flow Frequency Analysis			
Directory:	C:\Documents and Settings\q0hecmjf\Desktop\Clarion_R			
<u>U</u> nit System:	English			
	OK Cancel			

Figure 3-3. New Study Window.

Adding a Background Map

By default, when you start a new project in HEC-SSP a default map window (called Base Map) will open in the Desktop window. Having a background map is optional in HEC-SSP. Not having a map does not prevent the user from importing and entering data, or performing an analysis and viewing results. The map is mostly a visual aid of the study area. Additionally, when you bring in gage data you can enter the map coordinates of the gage and it will show up on the map. Once a gage is located on the map you can right click on it to open a shortcut menu for viewing the data, or graphing and tabulating the results.

To add a map layer to the default map, go to the **Maps** menu and select **Add Map Layers**. When this option is selected a file chooser window will appear, as shown in Figure 3-4, allowing the user to select map layers to bring into the map. The **Create Copy** option on the window will make a copy of the selected map and place it in the Maps subdirectory of the study folder.

Currently, the HEC-SSP software can load the following types of map layers: USGS DLG, AutoCAD DXF, shapefile, Raster Image, USGS DEM, Arc Info DEM, ASCII NetTIN, and Mr Sid.

An example map is shown in Figure 3-5. This map is an Arc Info DEM that was exported in the ASCII file format.

🖬 Select M	ap to Add		
Look <u>i</u> n:	🚞 Maps	💌 😰 🗈	9 📖 📰
My Recent Documents	🖬 ridgway.as	C	Create Copy
Desktop			
My Documents			
My Computer			
	File <u>n</u> ame:	ridgway.asc	<u>O</u> pen
My Network Places	Files of <u>t</u> ype:	All Maps 💌	<u>C</u> ancel

Figure 3-4. Add Map Layers File Chooser.

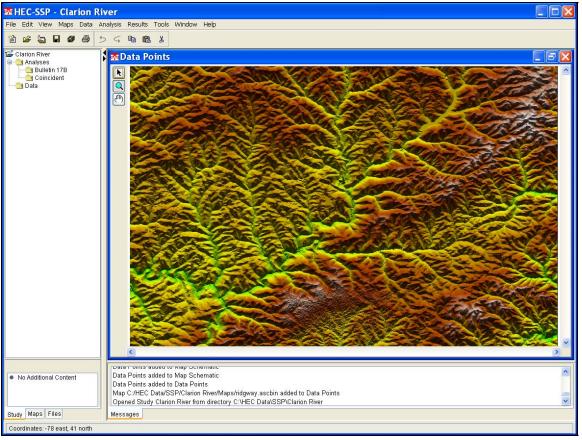


Figure 3-5. Example Background Map.

If more than one map layer is going to be used to make up a map, then it is up to the user to ensure that all map layers are in the same coordinate system. HEC-SSP does not perform coordinate system projections. Also, HEC-SSP can not always determine the coordinate system for all map layers entered. However, under the **Maps** menu is an option called **Default Map Properties**. This menu option can be used to set the default coordinate system for the map layers displayed in HEC-SSP. The user should set the default coordinate system first and then bring in map layers to the study.

Importing, Entering, and Editing Data

Before any analyses can be performed, the user must bring data into the HEC-SSP study. For a peak flow frequency analysis following guidelines in Bulletin 17B, the data must consists of peak annual flow data. To bring data into HEC-SSP go to the **Data** menu and select **New**. This will bring up the data importer as shown in Figure 3-6.

🔛 Data Importer						_ 🗆 🔀
Name:	Short ID:					
Description:						
Study DSS File:	C:\Documents and Setting	gs\q0hecmjf\Desktop\	SSP_Examples\SSP	_EXAMPLES.dss		
Study DSS Path:						
Data Source De	etails					
Location						
O HEC-DSS	💿 USGS Website	🔘 MS Excel	🔿 Manual 💦 🤇	🔿 Text File		
USGS Website						
Data Type: Ar	inual Peak Data	~				
Retrieve data fo	r: 💿 Flow 🔿 Stage					
Get USGS S	tation ID's by State					
Import	USGS	Basin Name		ation	Other Qualifier	
Data	Station ID's	(A Part)		Part)	(F Part)	_
						<u> </u>
						~
Import to St	udy DSS File					
Plot	Tabulate					Close

Figure 3-6. HEC-SSP Data Importer.

As shown in Figure 3-6, the Data Importer has fields for the Name, Short Identifier, and the Description of the data at the top of the window. Additionally, it lists the study DSS file name that the data will be stored in once it is brought into the study. The study DSS file is always labeled the same name as your study with the .DSS file extension.

The Data Importer contains two tabs, **Data Source** and **Details**. The **Data Source** tab is shown first. This tab is used for selecting and defining a source for bringing data into the HEC-SSP study. Currently, there are five ways to bring data into an HEC-SSP study: import from another HEC-DSS file, import data from the USGS web site, import from a Microsoft Excel spreadsheet, manually entering the data into a table, and import the data from a text file. All of these methods will import data into the study DSS file.

For this example, only importing data from the USGS website will be shown. For a complete description of the data importer see Chapter 4, using the Data Importer. To import data from the USGS website, first select the **USGS Website** option from the list of five options available in the Location panel. Next, select **Annual Peak Data** as the data type and make sure the **Flow** option is selected. The next step is to press the button labeled **Get USGS Station ID's by State**. When this button is pressed a shortcut window will appear (Figure 3-7) allowing the user to select a state from which to get data.

B Obtain	stations by s	state 🗙
Select State:	Pennsylvania	•
	Annual Peak Data	
	ОК	Cancel

Figure 3-7. Window to Select a State for Downloading Data.

Once a state is selected, press the **OK** button and a list of the available gages from that state will appear in a pick list as shown in Figure 3-8. Check the boxes for all of the gages you would like to import and then press the **Import to Study DSS File** button. Once the import button is pressed, a process will begin in which the data will be downloaded from the USGS website and saved to the study DSS file. HEC-SSP will automatically name the data when importing multiple gages at one time. The USGS import process will download annual peak flow data, annual peak stage data, and the USGS data quality codes. The quality codes will be added as an addition object to the Data folder.

In addition to the data itself, any metadata that is available will be downloaded and stored with the data. The metadata can be viewed from the **Details** Tab on the Data Importer. Metadata can also be viewed or edited by opening the Metadata Editor. To open this editor, place the mouse on top of a data object in the Data folder and click the right mouse button. The shortcut menu contains an **Edit Metadata** editor is shown in Figure 3-10.

HEC-SSP User's Manual

🖀 Data Importer -						
Name:	Short ID:					
Description:						
Study DSS File:						
0						
Study DSS Path:						
Data Source De	etails					
Location						
Lucation						
O HEC-DSS	💿 USGS Websi	te 🚫 MS Excel	🔘 Manual	🔘 Text File		
USGS Website						1
0000 Website						
Data Type: An	nual Peak Data	~				
Retrieve data fo	r. O Flaur O Ota					
Retrieve data io	r: 💿 Flow 🔿 Stag	je				
-						
Get USGS St	tation ID's by State	Pennsylvania				
Import	USGS	Basin Name		Location	Other Qualifie	r
Data	Station ID's	(A Part)		(B Part)	(F Part)	
	000000400	Dishau Dua	V Factorite	- D0	V 11000	~
	03026400	Richey Run Sevenmile Run	Emlento		USGS USGS	
			Rassela		11000 UN0 UD0	
	03027500	EB Clarion River		on River Dam, PA	USGS USGS	
	03028000	West Branch Clarion Rive Clarion River			USGS	
Lanad				iburg, PA	1 TOT 0 TO 100	
	03029000	Clarion River	Ridgway		USGS	
		03029200 Clear Creek Sigel, PA USGS				
	03029400	Toms Run	Cooksbu		USGS	~
		Clarian River	Cookehi	IFA DA	lileve	
Import to St	udy DSS File					
Plot	Tabulate					Close
						01036

Figure 3-8. Example of Choosing Gages from a USGS State List to Import.

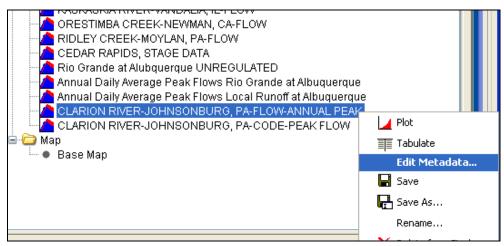


Figure 3-9. Open the Metadata Editor Using the Right Mouse Click Menu.

Chapter 3 - Working with HEC-SSP – An Overview

HEC-SSP User's Manual

🐖 Metadata Edit	tor - Cl	LARION RIVER-JOHNSONBURG, PA-FLOW-	ANNUAL PEAR	K*	- 🗆 🗙
Name:	CLARION RIVER-JOHNSONBURG, PA-FLOW-ANNUAL PEAK Short ID:				
Description:	Downloaded from USGS website. Station 03028500				
Study DSS File:	C:\Do	cuments and Settings\q0hecmjf\Desktop\SSP_	_Examples\SSF	P_EXAMPLES.dss	
Study DSS Path:	/CLAR	RION RIVER/JOHNSONBURG, PA/FLOW-ANNU	JAL PEAK//IR-C	CENTURY/USGS/	
State:	Penns	sylvania	County:	Elk	
Stream:	Clario	n River	Location:	Johnsonburg, PA	
Drainage Area:	204		DA Units:		
Gage Operator:	USGS	}	USGS No:		3028500
Gage Datum:	10		HUC:	05010005	
Vertical Datum:	NGVD)29 💌	•		
Description:					
Coordinate Loo	ation E	Data			
Coordinate Sys	stem:	Lat/Long 🗸 C	oordinate ID:		0
Horizontal Date	um:	NAD27 D	atum Units:	Degrees Minutes Seconds	~
Coordinate X V	alue:	-784043 C	oordinate Y Val	alue:	412910
				OK Cancel	Apply

Figure 3-10. Metadata can be Viewed or Edited by Opening the Metadata Editor.

As shown in Figure 3-10, the metadata consists of the State, County, Stream, Location, Drainage Area, DA Units, Gage Operator, USGS Gage No., Gage Datum, HUC (Hydrologic Unit Code), Vertical Datum, and a description field. Additionally, the coordinate location of the data is shown. The coordinate location consists of Coordinate System, Coordinate ID, Horizontal Datum, Datum Units, Coordinate X Value, and Coordinate Y Value. Most of the USGS data is retrieved with the Latitude/Longitude coordinate system as shown in the example. In addition to editing the metadata, the Metadata Editor allows the user to change the name of the data, enter a short identifier, and enter a longer description.

If the metadata does not download automatically, the user has the option to enter any of the information by hand. Metadata is not generated automatically for any of the other four data sources. Therefore, entering the metadata is required if the user wants the data to be carried along with the study.

After the data is imported into the study, the user can select any one of the gages in the Data folder and **Plot** or **Tabulate** the data. The plot and tabulate options are available from the Data menu and from a shortcut menu that opens by clicking the right mouse button when the pointer is located on top of the gage object in the Data folder. If you press the **Plot** button you will get a plot of the peak flow data for that gage. If you press the **Tabulate** button you will get a table containing the data. Data values can be edited within the table; however, the editing mode must be turned on. To turn on editing, select the **Edit** \rightarrow **Allow Editing** menu option. Use the **File** \rightarrow **Save** or **File** \rightarrow **Save As** menu option to save the data when you are satisfied with edits.

If the data has coordinate location information, it will then be plotted

Edit Metadata
📕 Plot
📰 Tabulate
Rename
🗙 Delete

on top of the background maps. The software will convert the coordinates of the point data to the default coordinate system of the base map. The user can interact with the plotted points by right clicking on the gage icon in the map and a shortcut menu will appear as shown. The user has the option to edit the metadata, plot, tabulate, rename, or delete the data.

Performing the Bulletin 17B Flow Frequency Analysis

To perform a Bulletin 17B flow frequency analysis, go to the **Analysis** menu and select **New > Bulletin 17B Flow Frequency**. This will bring up a blank Bulletin 17B Analysis editor. As shown in Figure 3-11, the user must enter a name for the analysis, a description (optional), and select a flow data set (gage data stored in project DSS file). The DSS File Name and Report File are automatically filled in by the program. For now, the DSS File Name will be the study DSS file and the report file will have the same name as the analysis.

The analysis window contains three tabs: General, Options, and Tabular Results. The **General** tab contains settings for Generalized Skew, Expected Probability Curve, Plotting Positions, Confidence limits, and a Time Window Modification. Default settings are already established for each of the options on the General tab; however, the user can change the default settings.

The **Options** tab contains information on Low Outlier Threshold, Historic Period Data, and User-Specified Frequency Ordinates. These options are not required for most analyses but may be necessary depending upon the data.

A detailed description of each of the Bulletin 17B settings and options can be found in Chapter 5, performing a Bulletin 17B Flow Frequency Analysis. Once all of the settings and options have been selected, the user presses the **Compute** button to have the computations performed. When the computations have finished a message window will open stating **Compute Complete**. Press the **OK** button on the message window to close the window. Once the computations have finished the user can begin to look at output.

🕌 Bulletin 17B Editor -		
Name:		
General Options Tabular Results		
 Generalized Skew Use Station Skew Use Weighted Skew Use Regional Skew Regional Skew: Reg. Skew MSE: Expected Probability Curve Compute Expected Prob. Curve Do Not Compute Expected Prob. Curve 	Plotting Position Weibull (A and B = 0) Median (A and B = 0.3) Hazen (A and B = 0.5) Other (Specify A, B) Plotting position computed using formula (m-A)/(n+1-A-B) Where: m=rank, 1=largest N=Number of Years A, B=Constants A: B: 	Confidence Limits O Defaults (0.05, 0.95) User Entered Values Upper Limit: Lower Limit: Time Window Modification DSS Range is <pre>start date</pre> <pre>end date</pre>
Compute Plot Curve View Repo	rt Print	OK Cancel Apply

Figure 3-11. Bulletin 17B Flow Frequency Analysis Editor.

Viewing and Printing Results

Tabular output can be found by selecting the **Tabular Results** tab. When this tab is pressed, a set of tables will appear as shown in Figure 3-12. The primary table on the Tabular Results tab consists of percent chance exceedance, computed flow frequency curve, the expected probability adjusted curve, and the 5 and 95 percent confidence limits. The second table (bottom left) contains general statistics about the data, such as the mean, standard deviation, station skew, regional skew, weighted skew, and the adopted skew of the analysis. The third table (bottom right) contains the number of historic events, high outliers, low outliers, zero or missing values, systematic events in the data set, and the number of years in the historic period. The table can be sent to the printer by pressing the Print button at the bottom of the analysis window. The user can control the number of decimal digits shown in the result tables and in reports. Select Options from the Tools menu and then open the **Results** tab, as shown in Figure 3-13.

HEC-SSP User's Manual

Name:	Ridgway PA Flov	v Frequency Analysis					
Description:							
·		analysis for the Clarion River at l		nsylvania			
Flow Data Set:	CLARION RIVER	R-RIDGWAY, PA-FLOW-ANNUAL	- PEAK				
DSS File Name:	C:\Documents a	nd Settings\q0hecmjf\My Docun	nents\SSP Pi	rojects\Clarion River\Clari	on_River.dss	(
Report File:	nd Settings\q0he	cmjf\My Documents\SSP Projec	ts\Clarion Ri	ver\Bulletin17bResults\R	idgway_PA_Flow_Frequency_	Analysis\Ridgway_PA	
General Option:	s Tabular Resul	ts					
		Frequency Curve for: CL/	ARION RIVER	R-RIDGWAY, PA-FLOW-AN	INUAL PEAK		
Percent C	hance	Computed Curve	Exp	ected Prob.	Confidence Li	mits	
Exceed	ance	Flow in cfs	F	low in cfs	Flow in cfs		
					0.05	0.95	
	0.1	73,164		105,071	155,246	45,43	
	0.2	62,227		83,619	125,785	39,74	
	0.5	49,521		61,622	93,562	32,89	
	1.0	41,103		48,626	73,564	28,15	
	2.0	33,607		38,050	56,801	23,77	
	5.0	24,954		26,910	38,887	18,44	
	10.0	19,237		20,155	28,065	14,70	
	20.0	14,114		14,451	19,225 	11,11 6,28	
	80.0	7,933 4,555		7,933	5,788	3,33	
	90.0	3,436		3,299	4,486	2,36	
	95.0	2,735		2,563	3,674	1,77	
	99.0	1,800		1,573	2,573	1,04	
System Statistics Number of Events							
Log Transform: Flow,				Event	nt Number		
Statistic Value			Historic Events				
Mean 3.9		3.906					
Standard Dev			0.292				
Station Skew			0.233		Puotomotio Evonto		
Regional Skew			0.000		Historic Poriod		
U.1.34							
Adopted Skew 0.134							

Figure 3-12. Tabular Results of Bulletin 17B Editor.

Chapter 3 - Working with HEC-SSP - An Overview

📓 Options 🛛 🔀					
General System Properties Results					
Number of decimal digits to show in results					
Flow Digits:	1 🗘				
Precipitation Digits:	2 🗘				
Stage Digits:	2 🗘				
Stats Digits:	3 🗘				
Volume Digits:	1 🗘				
OK Cancel Apply					

Figure 3-13. Dialog for Controlling the Number of Decimal Digits Shown in Result Tables and Reports.

Graphical output can be obtained by pressing the Plot Curve button at the bottom of the analysis editor. When this button is pressed, a plot will appear like the one in Figure 3-14. This plot contains the computed frequency curve, the expected probability adjusted curve, the confidence limits, and the data points plotted by the user-selected plotting position method. Additionally, a plot caption is listed at the top. The plot caption is by default the user-defined name of the analysis. The user can modify the plot properties by selecting the Edit->Plot Properties menu option. A plot properties window will open that lets the user change the line style for each data type, change the axis labels, modify the plot title, and edit other plot properties. The user can also edit line styles by placing the mouse on top of the line or data point in the plot or legend and clicking the right mouse button. Then select the Edit Properties menu option in the shortcut menu. The plot can be printed or sent to the windows clipboard by using the Print and Copy to Clipboard options found under the File menu.

Additional points and lines can be added to a plot by placing the mouse anywhere in the plot area and clicking the right mouse button. Then select the **Add Marker** option to add a line or **Add Marker Point** to add a point. Draw properties can be edited for these user-defined lines and points by placing the mouse on top of the point or line and clicking the right mouse button. Then select the **Edit Properties** option in the shortcut menu.

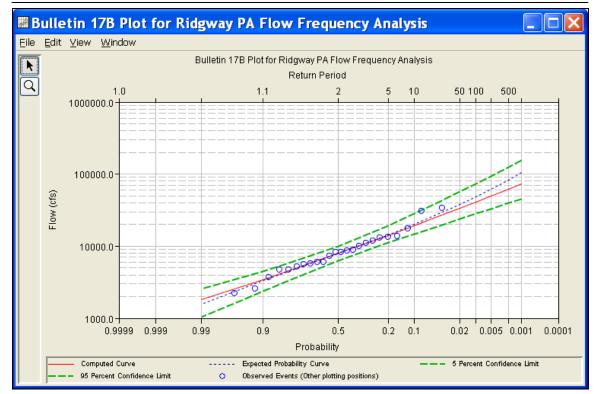


Figure 3-14. Flow Frequency Curve Plot.

The final piece of output available from a flow frequency analysis is a text report file. The report file lists all of the input data and user settings, plotting positions of the data points, intermediate results, each of the various statistical tests performed (i.e. high and low outliers, historical data, etc.), and the final results. This file is often useful for understanding how the software arrived at the final frequency curve. Press the **View Report** button at the bottom of the analysis editor to view the report file. When this button is pressed, a window will appear containing the text report as shown in Figure 3-15.

Clarion_River_at_Ri	dgway.rpt					×
<u>F</u> ile <u>E</u> dit <u>S</u> earch F <u>o</u> rmat						
File: C:\HEC Data\Clarion River\Bul	File: C:\HEC Data\Clarion River\Bulletin17bResults\Clarion_River_at_Ridgway\Clarion_River_at_Ridgway.rpt					
Bulletin 17B Frequency Analysis 12 Oct 2005 02:54 PM						
Input Data						
Analysis Name: Clarion River Description:	: at Ridgway					
Data Set Name: Clarion River at Ridgway, PA DSS File Name: C:\HEC Data\Clarion River\Clarion_River.dss DSS Pathname: /CLARION RIVER/RIDGWAY, PA/FLOW-ANNUAL PEAK/Oljan1900/IR-CENTURY/USGS/						
Report File Name: C:\HEC Dat XML File Name: C:\HEC Data\(
Regional Skew: 0.1 Regional Skew MSE: 0.302						
Plotting Position Type: Haze	m					
Upper Confidence Level: 0.03 Lower Confidence Level: 0.95						
Round ordinate values to 3 s Display ordinate values usin			art of valu	ue		
End of Input Data						
Final Results						
<< Plotting Positions >> Clarion River at Ridgway, PA	L					
Events Analyzed	Order	ed Events		-		
FLOW Day Mon Year CFS	Water Rank Year	FLOW CFS	Hazen Plot Pos	1		
	 13 Dec 1940 5,660 1 1942 34,000 2.08 19 Jul 1942 34,000 2 1996 30,400 6.25 26 May 1943 13,400 3 1951 17,500 10.42					~
<) 🗾 🚺	
				1:11:1	1:1	

Figure 3-15. Report File from Bulletin 17B Frequency Analysis.

CHAPTER 4

Using the HEC-SSP Data Importer

The HEC-SSP Data Importer is used to import, enter, and view data and the corresponding metadata used in an HEC-SSP study. The current version of HEC-SSP can be used to import annual peak data (flow and stage), daily data, hourly data, and real time data. Future versions of HEC-SSP will allow for other data types as other analyses are made available in the software.

Contents

- Developing a New Data Set
- Importing Data from an HEC-DSS File
- Importing Data from the USGS Website
- Importing Data from an Excel Spreadsheet
- Entering Data Manually
- Entering Data from a Text File
- Metadata
- Plotting and Tabulating Data

Developing a New Data Set

Before any analyses can be performed in HEC-SSP, the user must import or enter data into the study. Importing, entering, and viewing data is accomplished in the **Data Importer**. To open the data importer, go to the **Data** menu and select **New** from the list of options. This will bring up a data importer as shown in Figure 4-1.

🔛 Data Importer						
Name: Description: Study DSS File: Study DSS Path: [C:\Documents and Settir	ıgs\q0hecmjfiDesktop	Short IC		38	
Location	Location					
HEC-DSS USGS Website Data Type: An Retrieve data fo Get USGS St Import Data Data Import Data		×				
Import Data	USGS Station ID's	Basin Name (A Part)		Location (B Part)	Other Quali (F Part)	fier
Import to Stu	idy DSS File					Close

Figure 4-1. HEC-SSP Data Importer.

As shown in Figure 4-1, at the top of the editor, the user can enter a **Name** for the new data set. Optionally, the user can enter a short identifier (limited to 16 characters) and a **Description** of the data set. The study DSS file name is provided. The DSS file is used for storing the data for the study. The user does not have to enter a name when importing or manually entering data. The program will automatically name the data using USGS names or HEC-DSS pathname parts. If a **Name** is entered then it will be combined with the USGS gage name or HEC-DSS pathname parts to create a unique name. The user can rename a data set by selecting the data set in the study tree and

clicking the right mouse button. A shortcut menu should open with a **Rename** menu option. The **Data** menu also contains a **Rename** menu option; however, the data set must be selected in the study tree before this menu option is active.

The Data Importer contains two main tabs, **Data Source** and **Details**. The **Data Source** tab is used for importing or entering data manually while the **Details** tab is used to describe the data (i.e. metadata). The **Data Source** tab contains five options for getting data into the study DSS file: Importing from an existing HEC-DSS file, importing from the USGS Website, importing from an Excel spreadsheet, entering the data manually, and importing from a text file.

Importing Data from an HEC-DSS File

To import data from an HEC-DSS file into the HEC-SSP study DSS file, first select the **HEC-DSS** radio button on the data importer. Selecting **HEC-DSS** will change the view of the Data Importer to look like Figure 4-2.

📓 Data Importe	r -							
Name:				Short ID:]		
Description:								
Description.								
Study DSS File:	C:\Temp\SSP_E	xamples\SSP_EX	AMPLES.dss					
Study DSS Path:								
Data Source D	etails							
Location								
• HEC-DSS		Website 🤇) MS Excel 🛛 🔿	Manual 🔿 Text File				
HEC-DSS								
Selected DSS I	File:	C'ITempISSP Ex	amples\SSP_EXAMP	1 FS dss				
Selected DSS	Pathnama:	our outpicer _c.	amprovisor _z.a.im					
Selected Dool	raumame.		10 M	54. 54.	118			
Search A:	FISHKILL CREE	K	🗙 C:	~	E:	~		
By Parts: B:			🖌 D:	~	F:	*		
Number	Part A	Part B	Part C	Part D / range	Part E 🔺	Part F		
	ISHKILL CREEK	BEACON	FREQ-FLOW			BULLETIN 17B_F		
	ISHKILL CREEK	BEACON	FREQ-FLOW	MAX ANALYTICAL		GENFREQ_GENE		
	ISHKILL CREEK	BEACON	FREQ-FLOW			GENFREQ_GENE		
	ISHKILL CREEK	BEACON	FREQ-FLOW	MAX GRAPHICAL		GENFREQ_GENE		
1 FI	ISHKILL CREEK	BEACON	FLOW	05Mar1945 - 19Mar1968	IR-CENTURY			
/FISHKILL CREEK	K/BEACON/FLOW/05	5Mar1945 - 19Mar19	68/IR-CENTURY//			<u> </u>		
						~		
Import to Stu	udy DSS File	Clear Selection	15					
Plot	Tabulate					Close		

Figure 4-2. Data Importer with HEC-DSS Import Option.

As shown in Figure 4-2, the user first selects a DSS file to import from by typing the path and name or by choosing the file browser at the end of the input field. Once a DSS file is selected, the table of pathnames will be filled with the records that are contained in that DSS file. The user can reduce the number of listed pathnames by selecting pathname parts to filter in the pathname part selection area just above the table. Any pathname part can be used to filter the list down to a more manageable number of pathnames to select from. The user can then select pathnames to import by double clicking on one or more of the listed pathnames in the table. Each selected pathname will show up in the list below the table. Once the user has selected all of the pathnames that they want to import, pressing the **Import to Study DSS File** button enacts the import process. An HEC-SSP data set will be developed for each pathname that was selected.

Importing Data from the USGS Website

The second way to import data into HEC-SSP is to use the **USGS Website** option. When this option is selected, the data importer will look like Figure 4-3.

📓 Data Importer								
Name:			Short ID:					
Description:	ption:							
Study DSS File:	C:\Temp\SSP_Examples\SS	P_EXAMPLES.dss						
Study DSS Path:								
Data Source De	tails							
Location								
O HEC-DSS	💿 USGS Website	O MS Excel O	Manual 🔷 Text File					
USGS Website								
Data Type: Ani	nual Peak Data	~						
Retrieve data for	: 💿 Flow 🔵 Stage							
Get USGS St	ation ID's by State							
Import	USGS	Basin Name	Location	Other Qualifier				
Data	Station ID's	(A Part)	(B Part)	(F Part)				
					<u>^</u>			
	-							
					~			
Import to Stu	dy DSS File							
Plot	Tabulate				Close			

Figure 4-3. HEC-SSP Data Importer with USGS Website Import Option.

The first step in using the USGS import option is to select a data type to import (e.g. Annual Peak Data). Then choose to import **Flow** or **Stage** data. Next the user should select the **Get USGS Station ID's by State** button. Selecting this button will bring up a small window that allows the user to select a state in which to acquire data, as shown in Figure 4-4.

📕 Obtain	stations by	state 🗙
Coloct Otato:		
Select State:	Pennsylvania	×
Data Type:	Annual Peak Data	
	ОК	Cancel

Figure 4-4. Window to Select a State for Importing USGS Data.

Once the user selects a state and presses the **OK** button, a process will begin in which all of the gage locations for that state will be downloaded from the USGS website. A listing of all the gages for that state will then show up in the table at the bottom of the data importer. An example of the data importer with a list of USGS gages is shown in Figure 4-5.

📓 Data Importer -					_ 🗆 🛛			
Name:	Short ID:							
Description:								
Study DSS File:								
Study DSS Path:								
Data Source Deta	ails							
Location								
Lucation								
O HEC-DSS	💿 USGS Websi	ite 🔿 MS Excel 🔿 M:	anual 🛛 🔿 Text File					
USGS Website								
Data Type: Anni	ual Peak Data	*						
Retrieve data for:	💿 Flow 🔿 Sta	ae						
	U	-						
		Pennsylvania						
Get USGS Star	tion ID's by State	i cinicjirana						
Import	USGS	Basin Name	Location	Other Qualifier				
Data	Station ID's	(A Part)	(B Part)	(F Part)				
	~				~			
	03026400	Richey Run	Emlenton, PA	USGS	~			
	03026500	Sevenmile Run	Rasselas, PA	USGS				
✓	03027500	EB Clarion River	EB Clarion River Dam, PA	USGS				
	03028000	West Branch Clarion River	Wilcox, PA	USGS				
	03028500	Clarion River	Johnsonburg, PA	USGS				
Image: A state of the state	03029000	Clarion River	Ridgway, PA	USGS				
	03029200	Clear Creek	Sigel, PA	USGS				
	03029400	Toms Run	Cooksburg, PA	USGS				
	02020500	Clarian Rivar	Cookeburg BA	LIEGE	~			
Import to Stud	ty DSS File							
Plot	Tabulate				Close			
					01036			

Figure 4-5. Data Importer with USGS Gages Listed in Table.

The next step is to select the desired gages for importing into the HEC-SSP study. The user can filter the list to a smaller number of gages by using the filter drop down boxes at the top of the table. To select a gage for importing, simply check the box in the left hand column for each gage location that is to be imported. After all of the desired locations are selected, press the **Import to DSS File** button to import the data into the study DSS file. Pressing this button will start a process of downloading data from the USGS website. For each selected location, the software will download the Data Quality Codes if they are available. The program issues a message that data quality codes are available and adds the codes as an additional data set to the Data folder. For an explanation of the codes, please visit the USGS website.

Warning: all data download from the USGS website should be reviewed to ensure it is appropriate before any analyses are performed on the data. Some data stored on the USGS website are estimated, not measured. The user should check the data on the USGS website and be aware of the quality of all the data before using it. HEC-SSP

D

Е

will import the annual peak flow and stage quality codes (the program does not import quality codes for daily, instantaneous, and real time data). A description of the quality codes for annual peak flows is contained in Table 4-1 and a description of the quality codes for annual peak stages is contained in Table 4-2.

Code Description 1 Discharge is a Maximum Daily Average 2 Discharge is an Estimate Discharge affected by Dam Failure 3 Discharge less than indicated value which is Minimum 4 Recordable Discharge at this site Discharge affected to unknown degree by Regulation or 5 Diversion Discharge affected by Regulation or Diversion 6 7 Discharge is an Historic Peak 8 Discharge actually greater than indicated value Discharge due to Snowmelt, Hurricane, Ice-Jam or Debris 9 Dam breakup Year of occurrence is unknown or not exact А Month or Day of occurrence is unknown or not exact В All or part of the record affected by Urbanization, Mining, С Agricultural changes, Channelization, or other

Base Discharge changed during this year

Table 4-1. Quality Codes for USGS Annual Peak Flow Data.

Table 4-2. Quality Codes for USGS Annual Peak Stage Data.

Code	Description
1	Gage height affected by backwater
2	Gage height not the maximum for the year
3	Gage height at different site and(or) datum
4	Gage height below minimum recordable elevation
5	Gage height is an estimate
6	Gage datum changed during this year

Only Annual Maximum Peak available for this year

Importing Data from an Excel Spreadsheet

The third option for importing data into HEC-SSP is **MS Excel**. When this option is selected, the data importer will change as shown in Figure 4-6. Use the HEC-DSS or USGS options if you need to import daily average flow data.

Chapter 4 - Using the HEC-SSP Data Importer

🞆 Data Importe	r-							
Name:			Short ID:					
Description:								
Study DSS File:	C:\Temp\SSP_Examples\S	XTemp\SSP_Examples\SSP_EXAMPLES.dss						
Study DSS Path:]				
Data Source D	etails							
Location	200000000000000000000000000000000000000							
O HEC-DSS	🔘 USGS Website	MS Excel O N	lanual 🔘 Text File					
Excel File:								
Worksheet:			Block:					
Data Units:								
-DSS Pathnan	ne Parts							
A:		B:	C: FLO	N-PEAK				
D:		E: IR-CENTURY	F :					
Pathname:	/FLOW-PEAK//IR-CENTURY/	1						
	1							
c c	Ordinate	Date	Time	Value				
	Units							
	Туре							
Import to Stu	udy DSS File No Excel Fi	le selected						
Plot	Tabulate			Close				

Figure 4-6. Data Importer with MS Excel Import Option Selected.

The first step in importing data from an Excel spreadsheet is to select browse ... the end of the **Excel File** field. Once an Excel file is selected, a data view window will open showing the data contained in the selected spreadsheet. An example Excel[®] Data viewer is shown in Figure 4-7.

1	A	В	
	[
2			
3			
4	Date	Peak Flow	
5	14 May 1995	1204	
6	27 Jun 1996	765	
7	13 Jan 1997	2100	
8	14Feb1998	1356	
9	21Mar1999	1879	
10	02Apr2000	905	
11	30May2001	1648	
12	30 Jun 2002	2890	

Figure 4-7. Example Excel Data Viewer.

The next step is to highlight the date and flow data values for each value to be imported into the study (only highlight the data, not the column headings). The data must be in a format of Date in the first column and Peak Annual Flow in the second column. The date must be in the Day, Month, Year format (ddmmyyyy) as shown in Figure 4-7. Next, press the **OK** button and the data will be placed in the table at the bottom of the editor. The last steps before importing the data is to specify the units of the data, and each of the pathname parts for storing the data in the study DSS file. Enter units of **cfs** for data in cubic feet per second or units of **cms** for data in cubic meters per second. The final step is to press the **Import to Study DSS File** button, and the data will be imported.

Entering Data Manually

Another option for getting data into the study is to enter the data manually. When the **Manual** option is selected, the window will change to what is shown in Figure 4-8.

📈 Data Importe	r -							
Name:			Short ID:					
Description:								
Study DSS File:	C:\Temp\SSP_Examples\SSP_EXAMPLES.dss							
Study DSS Path:								
Data Source D	etails							
Location								
O HEC-DSS	🔿 USGS Webs	ite 🔿 MS Excel 💿	Manual O Text File					
⊢Pathname	Parts							
A:		B:	c:					
		E: IR-CENTURY						
D:		E. IR-CENTORY	v r.					
Pathname:	////IR-CENTURY//							
Start Date:			Units:					
Start Time:			Type: INST-VAL	~				
Paste								
Manual En	try Automatic Genera	lion						
	Ordinate	Date	Time	Value				
	1							
	3							
Import to Stud	ty DSS File							
Plot	Tabulate			Close				

Figure 4-8. Data Importer with Manual Data Entry Option Selected.

To enter data manually, the user enters a name for the data set at the top, along with a short identifier and a description (optional). A starting date and time must be entered. The units of the data must also be defined as well as the data type. The last step before entering the data is to specify the pathname parts for how the data will be stored into the study DSS file. This requires the user to enter a label for the A, B, C, E, and F part of the DSS pathname. Once all of the data labeling is completed, the data can be entered into the table at the bottom of the editor. The user must enter the **Date**, **Time**, and data **Value** for each peak flow value to be entered. After a Date, Time, and Value are entered into a row, a new row will be generated in the table when the user leaves the Value field. The date must be in the Day, Month, Year format (ddmmyyyy). Another option for getting data into the table is to copy it to the clipboard and then paste it into

the table. The table supports pasting data one column at a time or you can paste the date, time, and value information all at once. When all of the data are entered into the table, the user presses the **Import to Study DSS File** button and the data will be stored in the study DSS file.

Importing Data from a Text File

The fifth option for importing data into HEC-SSP is a comma delimited **Text File**. When this option is selected, the data importer will change as shown in Figure 4-9.

📓 Data Importe	r -							
Name:		Short ID:						
Description:								
Study DSS File:	C:\Temp\SSP_Exampl	les\SSP_EXAMPLES.dss						
Study DSS Path:	5							
Data Source D	etails							
Location	A A A A A A A A A A A A A A A A A A A							
O HEC-DSS	🔿 USGS Webs	ite 🔿 MS Excel 🚫 M	lanual 💿 Text File					
File:		Start Date:		Start Time:				
		Start Date:						
Data Units:								
DSS Pathnar	me Parts							
A:		B:	C: FL	OW-PEAK				
D:		E: IR-CENTURY	💌 F:					
Pathname:	//FLOW-PEAK//IR-CENT	URY//						
	Ordinate	Date	Time	Value				
	Units	Duto	11110					
	Туре							
Import to St	udy DSS File							
Image: Large descent and the second								

Figure 4-9. Data Importer with Text File Option Selected.

The first step in importing data from a comma delimited Text File is to press the Select File button at the end of the **File** field. Once a comma delimited text file is selected, a data view window will open showing the data contained in the selected file. An example text file data viewer is shown in Figure 4-10.

🛓 Alpha Versi	on. Time Se	ries Column	ar import.	File: bo040fl	ow.csv 🔳 🗖 🔀
Eile					
Row\Col	1	2	3	4	
1	Site	Date	Hour	Flow(cfs)	<u>~</u>
2	bo040	13AUG1993	24:00	6.346	
3	bo040	14AUG1993	24:00	6.017	-
4	bo040	15AUG1993	24:00	5.983	
5	bo040	16AUG1993	24:00	6.218	
6	bo040	17AUG1993	24:00	6.493	
7	bo040	18AUG1993	24:00	6.692	
8	bo040	19AUG1993	24:00	7.040	
9	bo040	20AUG1993	24:00	7.116	
10	bo040	21AUG1993	24:00	7.029	
11	bo040	22AUG1993	24:00	6.958	
12	bo040	23AUG1993	24:00	6.771	
13	bo040	24AUG1993	24:00	7.754	
14	bo040	25AUG1993	24:00	20.967	
15	bo040	26AUG1993	24:00	7.237	
16	bo040	27AUG1993	24:00	5.922	
17	bo040	28AUG1993	24:00	5.835	
18	bo040	29AUG1993	24:00	6.044	
19	bo040	30AUG1993	24:00	6.635	
20	bo040	31AUG1993	24:00	6.974	
21	bo040	01SEP1993	24:00	7.006	
22	bo040	02SEP1993	24:00	7.082	
23	bo040	03SEP1993	24:00	6.635	
24	bo040	04SEP1993	24:00	5.918	
25	ho040	059EP1003	24.00	6.038	×
				Import	Cancel

Figure 4-10. Example Text File Data Viewer.

The next step is to highlight the date, time, and data columns. Only highlight the data that will be imported, not the column headings. If there are column heading then they need to be identified. To do this, select the row or rows that do not contain data to be imported. Then click the right mouse button and select the **Skip Row(s)** menu option, as shown in Figure 4-11.

緍 Alpha Versi	on. Time S	Series Column	ar import.	File: bo040fl	ow.csv		×
File							
Row\Col	1	2	3	4			
1	Site	Date	Hour	Flow(cfs)			^
Skip Row((S)	13AUG1993	24:00	6.346			
Pathname P	art Row 🕨	14AUG1993	24:00	6.017			-
Units Row		15AUG1993	24:00	5.983			
	00040	16AUG1993	24:00	6.218			
6	bo040	17AUG1993	24:00	6.493			
7	bo040	18AUG1993	24:00	6.692			
8	bo040	19AUG1993	24:00	7.040			
9	bo040	20AUG1993	24:00	7.116			
10	bo040	21AUG1993	24:00	7.029			
11	bo040	22AUG1993	24:00	6.958			
12	bo040	23AUG1993	24:00	6.771			
13	bo040	24AUG1993	24:00	7.754			
14	bo040	25AUG1993	24:00	20.967			
15	bo040	26AUG1993	24:00	7.237			
16	bo040	27AUG1993	24:00	5.922			
17	bo040	28AUG1993	24:00	5.835			
18	bo040	29AUG1993	24:00	6.044			
19	bo040	30AUG1993	24:00	6.635			
20	bo040	31AUG1993	24:00	6.974			
21	bo040	01SEP1993	24:00	7.006			
22	bo040	02SEP1993	24:00	7.082			
23	bo040	03SEP1993	24:00	6.635			
24	bo040	04SEP1993	24:00	5.918			
25	bo040	059EP1003	24.00	8.038			~
				Import		Cancel	

Figure 4-11. Identify Rows that do not Contain Data to be Imported.

To identify the date and time columns, place the mouse pointer on the column number at the top of the table and click the right mouse button. Then move the mouse pointer to the **Date – Time Column** option to see an addition menu of options, as shown in Figure 4-12. Figure 4-12 shows that column 2 will be defined as the date column. The date must be in the Day, Month, Year format (ddmmyyy). The data viewer will highlight the date and time columns once they have been defined.

🕌 Alpha Version. Time Series Columnar import. File: bo040flow.csv 🛛 🔲 🗖 🔀							
File							
Row\Col	1	2	Oldin Column				
1	Site	Date	Skip Columr	I	fs)	<u> </u>	
2	bo040	13AUG199	Date - Time Co	olumn 🕨	Dat	e and Time Column	
3	bo040	14AUG199	Set Data Col	umn	Dat	e Column	
4	bo040	15AUG199	Clear Colum	in	Tim	e Column	
5	bo040	16AUG1993	24:00	6.218	Day	Column	
6	bo040	17AUG1993	24:00	6.493	Mor	nth Column	
7	bo040	18AUG1993	24:00	6.692	Yea	r Column	
8	bo040	19AUG1993	24:00	7.040	Mor	nth-Day Column	
9	bo040	20AUG1993	24:00	7.116	Day	-Month Column	
10	bo040	21AUG1993	24:00	7.029	Mor	nth-Year Column	
11	bo040	22AUG1993	24:00	6.958			
10	bo040	2241101002	24:00	6 771			

Figure 4-12. Identify Date and Time Columns.

To define the data column, place the mouse pointer on the column number at the top of the table and click the right mouse button. Then choose the **Set Data Column** menu option from the shortcut menu. Another editor will open, as shown in Figure 4-13, that allows the user to define the pathname parts, data units, and data type. After defining these data properties, click the **Import Now** button to import the data and data properties to the Data Importer. You can edit the data values or data properties in the data importer before importing the data to the study. The final step is to press the **Import to Study DSS File** button, and the data will be imported.

Pathnam	e Parts				-
A:		B:		C:	
_		E IDAY		✓ F:	-
D:	/////DAY//	E: 1DAY	X		
Pathname:	/////DAY// 13Aug1993		Units:		

Figure 4-13. Editor for Defining the Data Properties.

Metadata

When downloading data from the USGS website, in addition to the raw data, the software will also attempt to download any metadata available for each gage location. When using one of the other four methods for importing data, the user can manually enter metadata by selecting the **Details** tab, as shown in Figure 4-14. The metadata consists of the State, County, Stream, Location, Drainage Area, DA Units, Gage Operator, USGS Gage No., Gage Datum, HUC (Hydrologic Unit Code), Vertical Datum, and a description field. Additionally, the coordinate location of the data is shown. The coordinate location consists of Coordinate System, Coordinate ID, Horizontal Datum, Datum Units, Coordinate X Value, and Coordinate Y Value. If coordinate system data are entered, data icons and text labels will show up on the background map at the specified locations.

Metadata can be viewed and edited any time after the data has been imported into the study by opening the **Metadata Editor**. To open the Metadata Editor, place the mouse pointer on top of a data set in the Data folder and then click the right mouse button. Choose the **Edit Metadata** option from the shortcut menu, as shown in Figure 4-15. The Metadata Editor will look exactly like the Details tab on the Data Importer. The Metadata Editor can also be opened from the Data menu and from a shortcut menu that opens by right clicking on a data icon in a background map.

Chapter 4 - Using the HEC-SSP Data Importer

🖉 Data Importe	90° -			
Name:			Short ID:	
Description:				
Study DSS File:	C:\Ten	np\SSP_Examples\SSP_EXAMPLES.dss		
Study DSS Path:				
Data Source D	etails			
State:	1		County:	
Stream:	-		Location:	
Drainage Area:			DA Units:	
Gage Operator:	-		USGS No:	
Gage Datum:			HUC:	
Vertical Datum:	No Co	oordinate System	~	
Description:				
Decemption.	-			
O a surflue star 1 a				
Coordinate Lo	ocation L	Jata		
Coordinate Sy		No Coordinate System		
Coordinate Sy Horizontal Dat	tum:	No Coordinate System	Datum Units:	Not specified
Coordinate Sy	tum:			

Figure 4-14. Details Tab on the HEC-SSP Data Importer.

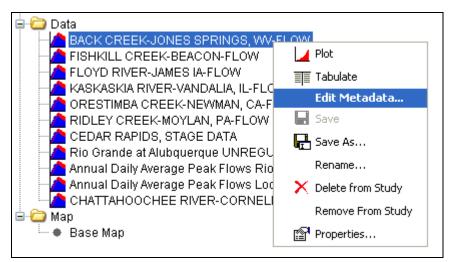


Figure 4-15. Menu Option for Opening the Metadata Editor.

Plotting and Tabulating the Data

After the data is imported into the study, the user can select any one of the data sets in the study tree. A shortcut menu will open when clicking the right mouse button while a data is selected. The shortcut menu contains options to change the name, plot, and tabulate the data. These options are also available from the Data menu; however, the data must be selected in the tree before these options are available. If you select the **Plot** option, you will get a plot similar to the one shown in Figure 4-16.

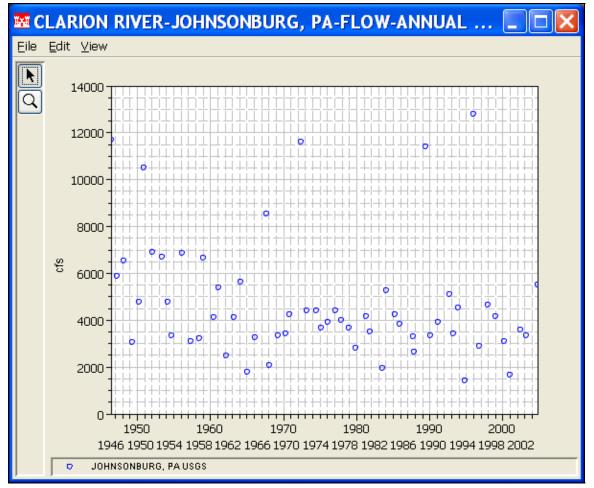


Figure 4-16. Plot of Peak Annual Flow Data Download from USGS Website.

If you select the **Tabulate** option, a table will open with the data listed as shown in Figure 4-17. Data values in the table can be edited after selected the **Edit** \rightarrow **Allow Editing** menu option. To save any edits, select the **File** \rightarrow **Save** menu option.

🕹 /Clarion River/Ridgway 🔳 🗖 🔀					
File Edit View					
			RIDGWAY, PA		
Ordinate	Date / Tin	ne	USGS		
Units			CFS		
Туре			INST-VAL		
1	13 Dec 40	24:00	5,660		
2	19 Jul 42	24:00	34,000		
3	26 May 43	24:00	13,400		
4	17 Mar 44	24:00	7,300		
5	03 Mar 45	24:00	10,000		
6	28 May 46	24:00	13,100		
7	05 Apr 47	24:00	8,280		
8	12 Apr 48	24:00	8,680		
9	22 May 49	24:00	3,710		
10	29 Mar 50	24:00	8,280		
11	25 Nov 50	24:00	17,500		
12	18 Jan 52	24:00	10,900		
13	23 May 53	24:00	8,900		
14	14 Aug 94	24:00	11,700		
15	20 Jan 95	24:00	2,530		
16	19 Jan 96	24:00	30,400		
17	08 Nov 96	24:00	4,630		
18	08 Jan 98	24:00	5,510		
19	24 Jan 99	24:00	6,030		
20	04 Apr 00	24:00	5,220		
21	17 Dec 00	24:00	2,190		
22	13 May 02	24:00	4,660		
23	01 Aug 03	24:00	5,920		
24	18 Sep 04	24:00	13,700		

Figure 4-17. Table Containing a Listing of Peak Annual Flow Data.

CHAPTER 5

Performing a Bulletin 17B Flow Frequency Analysis

The current version of HEC-SSP allows the user to perform flow frequency analyses based on Bulletin 17B, "Guidelines for Determining Flood Flow Frequency" (March 1982). This chapter discusses in detail how to perform a Bulletin 17B flow frequency analysis with HEC-SSP.

Contents

- Starting a New Analysis
- General Settings, Options, and Computations
- Viewing and Printing Results

Starting a New Analysis

A flow frequency analysis can be started in two ways within the software, either by right clicking on the Bulletin 17B folder in the study explorer and selecting **New**, or by going to the **Analysis** menu and selecting **New** and then **Bulletin 17B Flow Frequency**. When a new flow frequency analysis is selected, the Bulletin 17B Editor will appear as shown in Figure 5-1.

🖀 Bulletin 17B Editor -		
Name: Description: Flow Data Set: DSS File Name:		
Report File: General Options Tabular Results		
Generalized Skew O Use Station Skew Use Weighted Skew Use Regional Skew Regional Skew: Reg. Skew MSE: Expected Probability Curve Compute Expected Prob. Curve Do Not Compute Expected Prob. Curve	 Plotting Position Weibull (A and B = 0) Median (A and B = 0.3) Hazen (A and B = 0.5) Other (Specify A, B) Plotting position computed using formula (m-A)/(n+1-A-B) Where: m=rank, 1=largest N=Number of Years A,B=Constants A: B: D 	Confidence Limits Defaults (0.05, 0.95) User Entered Values Upper Limit: Lower Limit: Time Window Modification DSS Range is start date end date
Compute Plot Curve View Report	Print	OK Cancel Apply

Figure 5-1. Bulletin 17B Flow Frequency Analysis Editor.

The user is required to enter a **Name** for the analysis, while a **Description** is optional. An annual peak flow data set must be selected from the available data sets stored in the current study DSS file (see chapter 4 for importing data into the study). Once a Name is entered, and a flow data set is selected, the **DSS File Name** and **Report File** will automatically be populated. The DSS filename is by default the study DSS file. The report file is given the same name as the analysis with the extension ".rpt".

General Settings, Options, and Computations

Once the analysis name and flow data set are selected, the user can begin setting up the analysis. Three tabs are contained on the Bulletin 17B editor. The tabs are labeled **General**, **Options**, and **Tabular Results**.

General Settings

The first tab contains general settings for performing the flow frequency analysis (Figure 5-1). These settings include:

- Generalized Skew
- Expected Probability Curve
- Plotting Positions
- Confidence Limits
- Time Window Modification

Generalized Skew

There are three options contained within the generalized skew setting: Use Station Skew, Use Weighted Skew, and Use Regional Skew. The

Generalized Skew	
Ose Station Skew	
O Use Weighted Skew	
🔿 Use Regional Skew	
Regional Skew:	0.000
Reg. Skew MSE:	0.302

default skew setting is Use Station Skew. With this setting, the skew of the computed curve will be based solely on computing a skew from the data points contained in the data set. No weighting will be performed to compute the final skew.

The **Use Weighted Skew** option requires the user to enter a generalized regional skew and a Mean-Square Error (MSE) of the generalized regional skew. This option weights the computed station skew with the generalized regional skew. The equation for performing this weighting can be found in Bulletin 17B (equation 6). If a regional skew is taken from Plate I of Bulletin 17B (the skew map of the United States), the value of MSE = 0.302.

The last generalized skew option is **Use Regional Skew**. When this option is selected, the user must enter a generalized regional skew and an MSE for that skew. The program will ignore the computed station skew and use only the generalized regional skew.

Expected Probability Curve

This setting has two options: compute the expected probability curve and do not compute the expected probability curve. The default

Expected Probablity Curve
 Compute Expected Prob.Curve
O Do Not Compute Excpected Prob.

setting is to have the expected probability curve computed. When computed, this curve will be shown in both the result tables and the plots as an additional curve to the computed curve. The expected probability adjustment is an

attempt to correct for a certain bias in the frequency curve computation due to the shortness of the record. Please review the discussion in Bulletin 17B about the expected probability curve adjustment for an explanation of how and why it is computed. The use of the expected probability curve is a policy decision. It is most often used in establishing design flood criteria. The basic flood frequency curve without the expected probability curve adjustment is the curve used in computation of confidence limits, risk, and in obtaining weighted averages of independent estimates of flood frequency discharge (WRC, 1982).

Plotting Positions

Plotting positions are used for plotting the raw data points on the graph. There are four options for plotting position methodologies within HEC-SSP: Weibull, Median, Hazen, and user entered coefficients. The default method is the Weibull plotting position formula. The generalized plotting position equation is:

$$P = \frac{(m-A)}{(n+1-A-B)}$$

Plotting Position Weibull (A and B = 0) Median (A and B = 0.3) Hazen (A and B = 0.5) Other (Specify A, B)

Where: m = rank of flood values with the largest equal to 1.

n = number of flood peaks in the data set.

A & B = constants dependent on which equation is used (Weibull A and B=0; Median A and B = 0.3; and Hazen A and B=0.5).

Plotting positions are estimates of the exceedance probability of each data point. Different methods can give very different values for the probabilities of the highest and lowest points in the data set. In the Bulletin 17B methodology, the plotting of data on the graph by a plotting position method is only done as a guide to assist in evaluating the computed curve. The plotting position method selected does not have any impact on the computed curve.

Confidence limits provide a measure of the uncertainty in the computed discharge for a given exceedance probability. The

Confidence Limits	1					
💽 Defaults (0.05, 0.95)						
O User Entered Values						
Upper Limit:						
Lower Limit:						
	J					

computation of confidence limits is outlined in Bulletin 17B appendix 9. By default, HEC-SSP calculates the 90 percent confidence interval (i.e. the 5% and 95% confidence limits). The confidence limits must be entered in decimal form (i.e. 95% = 0.95, and 5% = 0.05). The user has the option to override the default values and enter whatever values they would

like for the confidence limits.

Time Window Modification

This option allows the user to narrow the time window used for the analysis. The default is to use all of the annual peak flow data

Time Window Modification					
DSS Range is	13DEC1940 - 18SEP2004				
📃 start date					
📃 end date					

contained in the selected data set. The user can enter either a start date for the analysis, and end date, or both a start and end date. If a start and/or end date

are used, they must be dates that are encompassed within the data stored in the selected data set. The date range for the selected data set is shown in the editor just above the **Start Date** field.

Options

In addition to the general settings, there are also several options available to the user for modifying the computations of the frequency curves. These options include:

- Low Outlier Threshold
- Historic Period Data
- User-Specified Frequency Ordinates

When the Options tab is selected, the Bulletin 17B Editor will appear as shown in Figure 5-2.

🕌 Bulletin 🕈	17B Editor -Ri	dgway PA Flow Frequency Analysis	
Name: Description: Flow Data Set: DSS File Name: Report File: General Option Low Outlier Thi	Ridgway PA Flow Fre Flow frequency analy CLARION RIVER-RID C:\Documents and Si Id Settings\q0hecmjft S Tabular Results	quency Analysis sis for the Clarion River at Ridgway Pennsylvania DGWAY, PA-FLOW-ANNUAL PEAK ettings\q0hecmjfMy Documents\SSP Projects\Clarion River\Clarion_River.dss My Documents\SSP Projects\Clarion River\Bulletin17bResults\Ridgway_PA_Flow_Frequency_ Historic Period Data Use Historic Data Historic Period Start Year: End Year: High Threshold: 0.000	
Compute	Plot Curve	Water Year Peak	0.0 20.0 30.0 30.0 36.0 49.0
Compute	Plot Curve	View Report Print OK Cancel Ap	ply

Figure 5-2. Bulletin 17B Editor with Options Tab Selected.

Low Outlier Threshold

High and low outlier tests are based on the procedures outlined in Bulletin 17B. The calculated outlier magnitudes, by the Bulletin 17B

Low Outlier Threshold					
Use Low Outlier Threshold					
Value	0.000				

procedures, are used as default values for the high and low outlier thresholds in HEC-SSP. The user has the option to enter a different value for the low outlier threshold. If a

value is entered for the low outlier threshold, then this value will override the computed value from Bulletin 17B procedure. When applying the outlier tests, HEC-SSP will identify both high and low outliers. However, only low outliers will be removed from the data set when performing the analysis. If a high outlier is identified in the data set, the analysts should try to incorporate historical period information to extend the time period for which the high outlier(s) is considered to be the maximum value(s). Further discussion of outlier thresholds can be found in Bulletin 17B and the HEC-SSP Statistical Reference Guide. To use the low outlier threshold, simply check the box and enter the value.

Historic Period Data

Any historic data that provides reliable estimates of flood peaks outside the systematic record should be used in order to modify and improve the frequency computations. Flood information outside of the systematic record can often be used to extend the record of the largest events to a historic period much longer than that of the systematic record. HEC-SSP uses historic data as recommended in Bulletin 17B. To use

Historic Period Data									
🔲 Use Historic Data	a								
Historic Period									
Start Year:									
End Year:									
High Threshold:									
Hiete	oric Events								
Water Year	Peak								

historic data in HEC-SSP, check the box labeled **Use Historic Data**. The user can enter a starting year for the historic period, ending year for a historic period, and a high threshold value. If the user enters a high threshold value, then any value in the systematic record greater than that value will also be treated as a historical flood peak. The user can also enter historic flood peaks that are not contained in the systematic record. This is done in the table at the bottom labeled **Historic Flood Peaks**. All years must be entered as water year values (October 1 through September 30). If a start year is not entered, then the assumed start year is the earliest year of the systematic record and any historical values that have been entered. If an end year is not entered, then the assumed end year is the latest year in the systematic record and any entered historic values. Further discussion of the use of historical data can be found in Bulletin 17B and the HEC-SSP Statistical Reference Guide.

Note: The program treats all data in the data set as systematic data. If historic events are included in the data set, then the user can define the analysis time window (General tab – Time Window Modification) so that it only bounds the systematic record. Then define the historic events in the Historic Events table. Instead of using the Time Window Modification option, another option is to enter a High Threshold value so that the historic data point(s) would be treated as historic data (rather than part of the systematic record). Please see test example 6 in Appendix B for an example of using the historic data adjustment.

User Specified Frequency Ordinates

This option allows the user to change the frequency ordinates used in computing the resulting frequency curves and confidence limits. The

default values listed in percent chance

exceedance are 0.2, 0.5, 1, 2, 5, 10, 20, 50, 80, 90, 95, and 99. Check the box next to Use Values from Table **below** to change or add additional values. Once this box is checked, the

٢	Jser Specified Frequency Ordinates	
	🗌 Use Values from Table below	
	Frequency in Percent	
		0.2
		0.5
		1.0
		2.0

user can add/remove rows and edit the frequency values. To add or remove a row from the table, select the row(s), place the mouse over the highlighted row(s) and click the right mouse button. The shortcut menu contains options to Insert Row(s) and Delete Row(s). The program will use the default values, even if they are not contained in the table, when the Use Values from Table below option is not checked. Finally, all values in the table must be between 0 and 100.

Compute

Once the new analysis has been defined, and the user has all of the settings and options the way they want them, performing the computations is simply a matter of pressing the Compute button at the bottom of the Bulletin 17B Editor.

Compute

Once the compute button is pressed, the flow frequency computations are performed. If the computations are successful, the user will receive a message that says **Compute Complete**. At this point, the user can begin to review the results of the flow frequency analysis.

Multiple Bulletin 17B analyses can be computed using the **Compute** Manager. Select the Analysis-Compute Manager menu option to open the Compute Manager. Select the analyses to be computed and then press the **Compute** button. Close the compute dialogs and Compute Manager when the program finished computing the analyses.

Viewing and Printing Results

The user can view output from the flow frequency analysis directly from the Bulletin 17B Editor. The output consists of tabular results, a frequency curve plot, and a report documenting the data and computations performed.

Tabular Output

Once the computations for the flow frequency analysis are completed, the user can view tabular output by opening the **Tabular Results** tab. When this tab is pressed, the results will be displayed as shown in Figure 5-3.

🕌 Bulletin 🖆	17B Editor	r -Ridgway PA Fl	ow Fre	equency Anal	ysis						
Name:	Ridgway PA Flow Frequency Analysis										
Description:	Flow frequency analysis for the Clarion River at Ridgway Pennsylvania										
Flow Data Set:	CLARION RIVER-RIDGWAY, PA-FLOW-ANNUAL PEAK										
DSS File Name:	C:\Documents and Settings\q0hecmjfMy Documents\SSP Projects\Clarion River\Clarion_River.dss										
Report File:	nd Settings\q0hecmjf\My Documents\SSP Projects\Clarion River\Bulletin17bResults\Ridgway_PA_Flow_Frequence										
General Options Tabular Results											
		Frequency Curve for: CLAR		R-RIDGWAY, PA-FLO	W-ANNUAL PEAK						
Percent Ch		Computed Curve		pected Prob.	Confidenc						
Exceeda	nce	Flow in cfs	F	low in cfs	Flow i						
	0.1	73,164		105,071	0.05	0.95 45,431					
	0.1	62,227		83,619	125,785	39,748					
	0.5	49,521		61,622	93,562	32,891					
	1.0	41,103		48,626	73,564	28,156					
	2.0	33,607		38,050	56,801	23,771					
	5.0	24,954		26,910	38,887	18,444					
	10.0 20.0	19,237 14,114		20,155	28,065 19,225	14,701 11,114					
	50.0	7,933		7,933	10,003	6,280					
	80.0	4,555		4,458	5,788	3,338					
	90.0	3,436		3,299	4,486	2,366					
	95.0	2,735		2,563	3,674 2,573	1,778					
	99.0	1,800		1,573	1,044						
	Systen	n Statistics									
	Log Tran	sform: Flow,		Even	Number						
Sta	tistic	Value		Historic Events	0						
Mean			3.906	High Outliers		0					
Standard Dev			0.292	Low Outliers Zero Or Missing	0						
Station Skew		0.233	Systematic Events	24							
Regional Skew Weighted Skew			0.000	Historic Period							
Weighted Skew 0.134 Adopted Skew 0.134											
Compute	Plot Cu	ve View Report	Print]	ок с	ancel Apply					

Figure 5-3. Bulletin 17B Editor with Tabular Results Tab Active.

Output on the results tab consists of three tables: Frequency Curves, System Statistics, and Number of Events. The **Frequency Curve** output table contains the percent chance of exceedance ordinates, the computed Log Pearson III frequency curve, the expected probability adjusted frequency curve, the 5% chance of exceedance confidence limit, and the 95% chance of exceedance confidence limit. The **System Statistics** table contains the mean of the data in log space, standard deviation in log space, station skew, user entered regional

skew, weighted skew (weighted between station skew and regional skew), and the adopted skew for the analysis. The **Number of Events** table tabulates the number of historic events, high outliers, low outliers, zero or missing values, systematic events, and the number of years in the historic period (this value only comes into play if the user entered historic data).

The tabular results can be printed by using the **Print** button at the bottom of the Bulletin 17B Editor. When the print button is pressed, a window will appear giving the user options for how they would like the table to be printed.

Graphical Output

Graphical output of the frequency curves can be obtained by pressing the **Plot Curve** button. When the Plot Curve button is pressed, a frequency curve plot will appear in a separate window as shown in Figure 5-4. The user can modify the plot properties by selecting the **Edit→Plot Properties** menu option. A plot properties window will open that lets the user change the line style for each data type, change the axis labels, modify the plot title, and edit other plot properties. The user can also edit line styles by placing the mouse on top of the line or data point in the plot or legend and clicking the right mouse button. Then select the **Edit Properties** menu option in the shortcut menu.

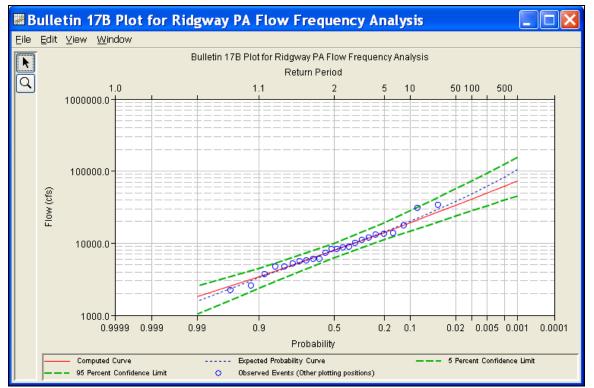


Figure 5-4. Example Frequency Curve Plot.

The frequency curve plot can be sent to the printer by selecting the **Print** option from the **File** menu at the top of the window. Additional printing options available from the File menu are Page Setup, Print Preview, and Print Multiple (used for printing multiple graphs on the same page). The graphic can also be sent to the Windows Clipboard by selecting **Copy to Clipboard** from the File menu. Additionally, the plot can be saved to a file by selecting the **Save As** option from the File menu. When the Save As option is selected, a window will appear allowing the user to select a directory, enter a filename, and select the format for saving the file. Currently, four file formats are available for saving the graphic to disk, windows metafile, postscript, JPEG, and portable network graphic.

The data contained within the plot can also be tabulated by selecting **Tabulate** from the **File** menu. When this option is selected, a separate window will appear with the data tabulated. Additional options are available from the File menu for saving the graphics options as a template (**Save Template**) and applying previously saved templates to the current graphic (**Apply Template**).

The **Edit** menu on the graphic window contains several options for customizing the graphic. These options include Plot Properties, Configure Plot Layout, Default Line Styles, and Default Plot Properties.

Also, a shortcut menu will appear with further customizing options when the user right-clicks on a line on the graph or the legend.

The graphic customizing capabilities within HEC-SSP are very powerful, but are also somewhat complex to use. The code used in developing the plots in HEC-SSP is the same code that is used for developing graphics in HEC-DSSVue and several other HEC software programs. Please refer to the HEC-DSSVue User's Manual for details on customizing plots.

Viewing the Report File

When the Bulletin 17B computations are performed, the computations module writes a report file of the statistical computations. The report file lists all of the input data and user settings, plotting positions of the data points, intermediate results, each of the various statistical tests performed (i.e. high and low outliers, historical data, etc...), and the final results. This file is often useful for understanding how the software arrived at the final frequency curve.

Press the **View Report** button at the bottom of the Bulletin 17B Analysis window to view the report file. When this button is pressed a window will appear containing the text report as shown in Figure 5-5.

Ridgway_PA_Flow_Frequency_Analysis.rpt											
<u>Eile E</u> dit <u>S</u> earch F <u>o</u> rma	at										
File: Ints\SSP Projects\Clari	ion River\B	ulletin17bF	Results\Ridgw	/ay_PA_Flow	/_Frequency	/_Analysis\Ridgway_PA_Flow_Frequency_Analys	sis.rp				
End of Input Data											
<pre> << Low Outlier Test >></pre>											
Based on 24 events, 10 percent outlier test value $K(N) = 2.467$											
0 low outlier	(s) ident	iried be.	low test va	alue of 1,	532.58						
<< High Outlier Test											
Based on 24 events,	10 perce	nt outli	er test val	Lue K(N) =	2.467						
0 high outlier	(s) ident	ified ab	ove test va	alue of 42	,311.6						
Final Results	_										
<pre><< Plotting Positions CLARION RIVER-RIDGWAY</pre>		W-ANNUAL	PEAK								
Events Analyzed	a I		Ordered								
1	FLOW		Water	FLOW							
Day Mon Year 		Rank 			Plot Pos 						
13 Dec 1940	5,660	1	1942 1996 1951 2004	34,000	4.00						
19 Jul 1942 3 26 May 1943]	34,000 13,400	3	1996	30,400 17,500	8.00 12.00						
17 Mar 1944	7,300	4	2004	13,700	16.00	Ì					
03 Mar 1945]	10,000 13,100	5	1943 1946	13,400 13,100 11,700	20.00	1					
28 May 1946]	13,100	6	1946	13,100	24.00		_				
05 Apr 1947 12 Apr 1948	8,280	7	1994	11,700 10,900	28.00 32.00						
22 May 1949	3,710 1	9	1945	10,000	36.00						
29 Mar 1950	8,280	10	1953	8,900	40.00						
25 Nov 1950]	17,500	11	1994 1952 1945 1953 1948 1950 1947	8,680	44.00						
18 Jan 1952	10,900	12	1950	8,280	48.00	1					
23 May 1953	8,900	13	1947	8,280	52.00						
1 14 Aug 1994 1	11,/00	14	1944	7,300	56.00						
	2,530		1999	6,030	60.00						
	30,400		2003	5,920	64.00						
	4,630		1941	5,660	68.00						
08 Jan 1998 24 Jan 1999	5,510	18	1998	5,510	72.00						
24 Jan 1999 04 Apr 2000	6,030 5,220	19 20	2000 2002	5,220 4,660	76.00 80.00						
17 Dec 2000	2,190	20	1997	4,630	84.00						
13 May 2002	4,660	22	1949	3,710	88.00						
01 Aug 2003	5,920	23	1995	2,530	92.00	1					
18 Sep 2004	13,700 j	24	2001	2,190	96.00	1	*				
<						2	>				
						1:1.1:1 1:1					

Figure 5-5. Example of the Bulletin 17B Report File.

Plots, tables and reports can also be created by selecting menu options from the **Results** menu. At least one Bulletin 17B analysis must be selected in the tree before selecting one of the menu options on the Results menu. Results from multiple analyses are combined in one graph if they are selected in the study tree when the **Graph** menu option is selected. The **Results**→**Summary Report** menu option will

create a summary table of statistics and frequency curve ordinates for the selected analyses as shown in Figure 5-6.

	:h F <u>o</u> rmat		222												
Ie: C:\Temp\S	3SP_Examples\Bulletin17bResults\Bulletin17b	Summary.r	pt												
	B Summary Report														
ion Jan 05	21:14:51 PST 2009														
	mary of Statistics														
 nalysis	Data	Mean	Std		Skew.			Hist	Outl	ier Zero	/ Syst	Hist			
ame	Name		Dev	Stn	Rgnl	Wght	Adpt	Evnt	Hi	Lo Msng	Evnt	Perd			
	FISHKILL CREEK-BEACON-FLOW	3.378	0.255	0.730	0.600	0.677	0.677	0	0	0 0	24				
	FLOYD RIVER-JAMES IA-FLOW BACK CREEK-JONES SPRINGS, WV-FLOW	3.547 3.741	0.447	0.175	-0.300 0.500	0.074	0.074	0	1	0 0	39 38	82			
FA Test 4	ORESTIMBA CREEK-NEWMAN, CA-FLOW	2.975	0.678	-0.578	-0.300	-0.472	-0.472	0	0	1 6					
	KASKASKIA RIVER-VANDALIA, IL-FLOW		0.273		-0.400	0.182		0							
	RIDLEY CREEK-MOYLAN, PA-FLOU	4.126 3.120	0.283	0.409	0.400	0.890	0.182 0.890			2 0 0 0		132			
												132			
FFA Test 6 Fable 2 Sum		3.120	0.283	1.088	0.400	0.890	0.890	1	0	0 0	24				
FFA Test 6 Fable 2 Sum	RIDLEY CREEK-MOYLAN, PA-FLOW	3.120	0.283	1.088		0.890	0.890	1	0	0 0 e Exceed	24 ance				0.5
FFA Test 6 Table 2 Sum analysis Jame	RIDLEY CREEK-MOYLAN, PA-FLOW mary of Frequency Curve Ordinates Data Name	3.120	0.283	1.088 	0.400 	0.890	0.890	l ent C	0 'hang 20	0 0 e Exceed 1	24	5	2		
TA Test 6 Table 2 Sum unalysis Jame TFA Test 1	RIDLEY CREEK-MOYLAN, PA-FLOW mary of Frequency Curve Ordinates Data Name FISHKILL CREEK-BEACON-FLOW	3.120	0.283 99 0.5 1	1.088 	0.400	0.890	0.890	1 cent C 36	0 hang 20	0 0 e Exceed 1	24 ance) 9 650	5	2	1 11388.8 37981.6	0.5 14215.0 49600.7
FFA Test 6 Fable 2 Sum Analysis Name FFA Test 1 FFA Test 2 FFA Test 2	RIDLEY CREEK-MOYLAN, PA-FLOW mary of Frequency Curve Ordinates Data Name FISHKILL CREEK-BEACON-FLOW FLOYD RIVER-JAMES IA-FLOW BACK CREEK-JONES SERVINGS MU-FLOW	3.120 83 34 200	0.283 99 0.5 1 9.4 4.3 2	1.088 95 038.5 671.3 524.6	0.400 90 1192.1 955.3 2901.0	0.890 80 1438.2 1471.8 3490.3	0.890 Perc 50 2194.8 3404.8 5238.5	1 ent C 36 80 84	0 hang 20 57.1 18.8 49.0	0 0 e Exceed 4959. 12638. 11181.	24 ance 9 650 5 1847 3 1432	5 16.1 10.8 12.2	2 9031.5 28425.7 19266.5	11388.8 37981.6 23729.8	14215.0 49600.7 28934.7
TA Test 6 Table 2 Sum malysis Jame TFA Test 1 TFA Test 2	RIDLEY CREEK-MOYLAN, PA-FLOW mary of Frequency Curve Ordinates Data Name FISHKILL CREEK-BEACON-FLOW FLOYD RIVER-JAMES IA-FLOW BACK CREEK-JONES SERVINGS MU-FLOW	3.120 83 34 200	0.283 99 0.5 1 9.4 4.3 2	1.088 95 038.5 671.3 524.6 61.8	0.400 90 1192.1 955.3 2901.0 121.9	0.890 80 1438.2 1471.8 3490.3 266.5	0.890 Perc 50 2194.8 3404.8 5238.5 1043.8	1 cent C 36 80 84 34	0 hang 20 57.1 18.8 49.0	0 0 e Exceed 1 4959. 12638. 11181. 6041.	24 ance 9 650 5 1847 3 1432 4 928	5 6.1 0.8 2.2	2 9031.5 28425.7 19266.5 14572.3	11388.8 37981.6 23729.8 19296.3	14215.0 49600.7 28934.7 24623.1
FFA Test 6 Fable 2 Sum Analysis Jame FFA Test 1 FFA Test 2 FFA Test 3	RIDLEY CREEK-MOYLAN, PA-FLOW mary of Frequency Curve Ordinates Data Name FISHKILL CREEK-BEACON-FLOW	3.120 83 34 200	0.283 99 0.5 1 9.4 4.3 2	1.088 95 038.5 671.3 524.6 61.8	0.400 90 1192.1 955.3 2901.0	0.890 80 1438.2 1471.8 3490.3 266.5	0.890 Perc 50 2194.8 3404.8 5238.5	1 cent C 36 80 84 34 220	0 hang 20 57.1 18.8 49.0 50.0	0 0 e Exceed 4959. 12638. 11181.	24 ance 9 650 5 1847 3 1432 4 928 4 3806	5 6.1 0.8 2.2 9.3 1.7	2 9031.5 28425.7 19266.5 14572.3	11388.8 37981.6 23729.8	14215.0 49600.7 28934.7 24623.1
FFA Test 6 Fable 2 Sum Analysis Jame FFA Test 1 FFA Test 2 FFA Test 3	RIDLEY CREEK-MOYLAN, PA-FLOW mary of Frequency Curve Ordinates Data Name FISHKILL CREEK-BEACON-FLOW FLOYD RIVER-JAMES IA-FLOW BACK CREEK-JONES SERVINGS MU-FLOW	3.120 83 34 200	0.283 99 0.5 1 9.4 4.3 2	1.088 95 038.5 671.3 524.6 61.8 792.4	0.400 90 1192.1 955.3 2901.0 121.9 5905.6	0.890 80 1438.2 1471.8 3490.3 266.5 7652.2	0.890 Perc 50 2194.8 3404.8 5238.5 1043.8 12824.3	1 cent C 36 80 84 34 220	0 hang 20 57.1 18.8 49.0 50.0	0 0 e Exceed 1 4959. 12638. 11181. 6041. 29659.	24 ance 9 650 5 1847 3 1432 4 928 4 3806	5 6.1 0.8 2.2 9.3 1.7	2 9031.5 28425.7 19266.5 14572.3 50712.8	11388.8 37981.6 23729.8 19296.3 61633.1	14215.0 49600.7 28934.7 24623.1 73871.2
FFA Test 6 Table 2 Sum Analysis Name FFA Test 1 FFA Test 1 FFA Test 2	RIDLEY CREEK-MOYLAN, PA-FLOW mary of Frequency Curve Ordinates Data Name FISHKILL CREEK-BEACON-FLOW FLOYD RIVER-JAMES IA-FLOW BACK CREEK-JONES SERVINGS MU-FLOW	3.120 83 34 200	0.283 99 0.5 1 9.4 4.3 2	1.088 95 038.5 671.3 524.6 61.8 792.4	0.400 90 1192.1 955.3 2901.0 121.9 5905.6	0.890 80 1438.2 1471.8 3490.3 266.5 7652.2	0.890 Perc 50 2194.8 3404.8 5238.5 1043.8 12824.3	1 cent C 36 80 84 34 220	0 hang 20 57.1 18.8 49.0 50.0	0 0 e Exceed 1 4959. 12638. 11181. 6041. 29659.	24 ance 9 650 5 1847 3 1432 4 928 4 3806	5 6.1 0.8 2.2 9.3 1.7	2 9031.5 28425.7 19266.5 14572.3 50712.8	11388.8 37981.6 23729.8 19296.3 61633.1	14215.0 49600.7 28934.7 24623.1 73871.2

Figure 5-6. Summary Table for Selected Bulletin 17B Analyses.

CHAPTER 6

Performing a Generalized Frequency Analysis

The current version of HEC-SSP allows the user to perform generalized frequency analyses of flow and stage data, as well as other data types. The user can choose between different analytical distributions as well as perform a graphical fit to the data. This chapter discusses in detail how to use the Generalized Frequency analysis editor with HEC-SSP.

Contents

- Starting a New Analysis
- General Settings and Options
- Analytical Frequency Analysis
- Graphical Frequency Analysis
- Viewing and Printing Results

Starting a New Analysis

A generalized frequency analysis can be started in two ways, either by right clicking on the Generalized Frequency Analysis folder in the study tree and selecting **New**, or by going to the **Analysis** menu and selecting **New** and then **Generalized Frequency Analysis**. When a new generalized frequency analysis is selected, the Generalized Frequency editor will appear as shown in Figure 6-1.

🛎 General Frequency -	
Name: Description: Data Set: DSS File Name: Report File: General Options Analytical Graphical Log Transform • Use Log Transform • Do not use Log Transform • Defaults (0.05, 0.95) • User Entered Values Upper Limit: Lower Limit: Time Window Modification DSS Range is • start date • end date	<pre>Plotting Position</pre>
Plot Analytical Compute Curve View Report	Print OK Cancel Apply

Figure 6-1. Generalized Frequency Analysis Editor.

The user is required to enter a **Name** for the analysis, while a **Description** is optional. A data set (flow, stage, or other) must be selected from the available data sets stored in the current study DSS file (see Chapter 4 for importing data into the study). Once a Name is entered and a data set is selected, the **DSS File Name** and **Report**

File will automatically be filled out. The DSS filename is by default the study DSS file. The report file is given the same name as the analysis with the extension ".rpt".

General Settings and Options

Once the analysis name and data set are selected, the user can begin to perform the computations. Contained on the Generalized Frequency editor are four tabs. The tabs are labeled **General**, **Options**, **Analytical**, and **Graphical**. This section of the manual explains the use of the General and Options tabs.

General Settings

The first tab contains general settings for performing the frequency analysis (Figure 6-1). These settings include:

- Log Transforms
- Plotting Positions
- Confidence Limits
- Time Window Modification

Log Transform

There are two options contained within the Log Transform setting: Use Log Transform and Do not use Log Transform. If the user selects **Use**

Log Transform then the logs of the data will be taken first. The frequency analysis will be performed on the logs of the data. If the user selects **Do not use Log Transform**, then the frequency analysis will be performed on

the raw data values without taking the

Log Transform
 Use Log Transform
 Do not use Log Transform

logs of the data. The default setting is Use Log Transform.

Plotting Positions

Plotting positions are used for plotting the raw data points on the graph. There are four options for plotting position methodologies

Plotting Position
~
💽 Weibull (A and B = 0)
🔘 Median (A and B = 0.3)
Hazen (A and B = 0.5)
Other (Specify A, B)

within HEC-SSP: Weibull, Median, Hazen, and user entered coefficients. The default method is the Weibull plotting position formula. The generalized plotting position equation is:

$$P = \frac{(m-A)}{(n+1-A-B)}$$

Where: m = rank of flood values with the largest equal to 1.

- n = number of flood peaks in the data set.
- A & B = constants dependent on which equation is used (Weibull A and B=0; Median A and B = 0.3; and Hazen A and B=0.5).

Plotting positions are estimates of the exceedance probability of each data point. Different methods can give very different values for the probabilities of the highest and lowest points in the data set. In the Generalized Frequency methodology, the plotting of data on the graph by a plotting position method is only done as a guide to assist in evaluating the computed curve. The plotting position method selected does not have any impact on the computed curve.

Confidence Limits

Confidence limits provide a measure of the uncertainty in the computed value for a given exceedance probability. The computation

of confidence limits is outlined in Bulletin 17B Appendix 9, and is applied in the same manner here in the generalized frequency analysis. By default, HEC-SSP calculates the 90 percent confidence interval (i.e. the 5% and 95% confidence limits). The confidence limits must be entered in decimal form (i.e. 95% = 0.95, and 5% = 0.05). The user has

ſ	Confidence Limits	1
	💿 Defaults (0.05, 0.95)	
	O User Entered Values	
	Upper Limit:	
	Lower Limit:	
Ľ		J

the option to override the default values.

Time Window Modification

This option allows the user to narrow the time window used for the analysis. The default is to use all of the data contained in the selected

data set. The user can enter either a start date and end date or both a start and end date. If a start and/or end date are used, they must be dates

	Time Window M	lodification	
te	DSS Range is	13DEC1940 - 18SEP2004	
	📃 start date		
	🔲 end date		
toc			

that are encompassed within the data stored in the selected data set. The date range for the selected data set is shown in the editor just above the **Start Date** field.

Options

In addition to the general settings, there are also several options available to the user for modifying the computations of the frequency curves. These options include:

- Low Outlier Threshold
- Historic Period Data
- User-Specified Frequency Ordinates
- Output Labeling

When the Options tab is selected, the Generalized Frequency editor will appear as shown in Figure 6-2.

🕌 General F	requency -Ridgway Ge	eneral Frequency Analy	rsis 📃 🗖 🔀
Name: Description: Data Set: DSS File Name: Report File: General Option:	uencyResults\Ridgway_General_Fre		
Low Outlier Thr Use Low Ou Value Output Labeling Data Name DSS data nam V change lai Data Unit DSS Data Unit Change lai	ittlier Threshold e is FLOW-ANNUAL PEAK bel Flow is CFS	Historic Period Data Use Historic Data Historic Period Start Year: End Year: High Threshold: Historic Events Water Year Peak	User Specified Frequency Ordinates ✓ Use Values from Table below Frequency in Percent 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 80.0 90.0 95.0
Compute	Plot Analytical Curve	View Report	OK Cancel Apply

Figure 6-2. General Frequency Editor with Options Tab Selected.

Low Outlier Threshold

High and low outlier tests are based on the procedures outlined in Bulletin 17B, and are applied in the same manner in the Generalized

Low Outlie	er Threshold	
🗌 Use L	ow Outlier Threshold	
Value		0.000

Frequency Analysis. The calculated outlier magnitudes, by the Bulletin 17B procedure, are used as default values for the high and low outlier thresholds in HEC-SSP. The

user has the option to enter a different value for the low outlier threshold. If a value is entered for the low outlier threshold, then this value will override the computed value from the Bulletin 17B methodology. When applying the outlier tests, HEC-SSP will identify both high and low outliers. However, only low outliers will be removed from the data set when performing the analysis. If a high outlier is identified in the data set, the analysts should try to incorporate historical period information to extend the time period for which the high outlier(s) is considered to be the maximum value(s). Further discussion of outlier thresholds can be found in Bulletin 17B and the HEC-SSP Statistical Reference Guide. To use the low outlier threshold, simply check the box and enter the value.

Historic Period Data

Any historic data that provides reliable estimates outside the systematic record should be used in order to modify and improve the frequency computations. Information outside of the systematic record can often be used to extend the record of the largest events to a historic period much longer than that of the systematic record. HEC-SSP uses historic data as recommended in Bulletin 17B. This

calculation is applied in the same manner in the **Generalized Frequency** Analysis. To use historic data, check the box labeled Use Historic Data. The user can enter a starting year for the historic period, ending vear for a historic period. and a High Threshold value. If the user enters a high threshold value, then any data in the systematic record greater than that value will also be treated as a historical annual

Historic Period Data					
🔲 Use Historic Dat	Use Historic Data				
Historic Period	Historic Period				
Start Year:	Start Year:				
End Year:					
High Threshold:					
Hist	orio	Events			
Water Year		Peak			

maximum. The user can also enter historic data that are not contained in the systematic record. This is done in the table at the bottom labeled **Historic Events**. All years must be entered as water year values (October 1 through September 30). If a start year is not entered, then the assumed start year is the earliest year of the systematic record and any historical values that have been entered. If an end year is not entered, then the assumed end year is the latest year in the systematic record and any entered historic values. Further discussion of the use of historical data can be found in Bulletin 17B and the HEC-SSP Statistical Reference Guide.

Note: The program treats all data in the data set as systematic data. If historic events are included in the data set, then the user can define the analysis time window (General tab – Time Window Modification) so that it only bounds the systematic record. Then define the historic events in the Historic Events table. Instead of using the Time Window Modification option, another option is to enter a High Threshold value so that the historic data point(s) would be treated as historic data (rather than part of the systematic record). Please see test example 6 in Appendix B for an example of using the historic data adjustment.

User Specified Frequency Ordinates

This option allows the user to change the frequency ordinates used in computing the resulting frequency curves and confidence limits. The

default values listed in percent chance

exceedance are 0.2, 0.5, 1, 2, 5, 10, 20, 50, 80, 90, 95, and 99. Check the box next to **Use Values from Table below** to change or add additional values. Once this box is checked, the user can

User Specified Frequency Ordinates	
Use Values from Table below	
Frequency in Percent	
	0.2
	0.5
	1.0
	2.0

add/remove rows and edit the frequency values. To add or remove a row from the table, select the row(s), place the mouse over the highlighted row(s) and click the right mouse button. The shortcut menu contains options to **Insert Row(s)** and **Delete Row(s)**. The program will use the default values, even if they are not contained in the table, when the **Use Values from Table below** option are not checked. Finally, all values in the table must be between 0 and 100.

Output Labeling

This option allows the user to change the default labels for data

Output Labeling	
Data Name	
DSS data name is	FLOW-ANNUAL PEAK
🗹 change label	Flow
Data Unit	
DSS Data Unit is	CFS
🔲 change label	CFS

contained in the output tables and plots. The user can change both the name of the data as well as how the units of the data are labeled.

Analytical Frequency Analysis

Once the new analysis has been defined and the user has all of the general settings and options the way they want them, the user can choose between performing an Analytical Frequency analysis or a Graphical Frequency analysis. This section of the manual describes how to use the Analytical Frequency analysis option.

When the user selects the **Analytical** tab on the Generalized Frequency Analysis editor, the window will appear as shown in Figure 6-3. As shown, three additional tabs will appear on the screen: Settings, Tabular Results, and Plot. Chapter 6 - Performing a Generalized Frequency Analysis

🕌 General F	requency -Ridgw	ay General Frequency Analysis	
Name:	Ridgway General Frequenc	y Analysis	
Description:			
Data Set:	CLARION RIVER-RIDGWAY	r, PA-FLOW-ANNUAL PEAK	
DSS File Name:	/Documents and Settings/q	0hecmjf/My Documents/SSP Projects/Clarion River/Clarion_River.ds	
Report File:	uencyResults\Ridgway_Ge	neral_Frequency_Analysis\Ridgway_General_Frequency_Analysis.rl	
General Options	Analytical Graphical		
Settings Tabul	ar Results Plot		
Log Transform:	ation: On	Generalized Skew	
Distribution:		O Use Station Skew	
		O Use Weighted Skew	
O Use Regional Skew Regional Skew:			
		Reg. Skew MSE:	
		Expected Probablity Curve	
		O Compute Expected Prob. Curve	
 Do Not Compute Expected Prob. Curve 			
	Plot Analytical Graphica		
Compute	Curve Curve	View Report 🔿 Print OK Cancel	Apply

Figure 6-3. Analytical Analysis Tab of the Generalized Frequency Editor.

Settings

The **Settings** tab contains additional settings for the analytical frequency analysis. These settings include:

- Distribution
- Generalized Skew
- Expected Probability Curve

Distribution

This option allows the user to select from available analytical distributions to perform the frequency analysis. The current version of HEC-SSP contains five distribution choices: None, Normal, LogNormal,

Log Transformation: log transform is	On
Distribution	
LogNormal	~

Pearson III, and LogPearson III. If the user has selected to transform the data to log space (General tab), then the only available choices for distribution will be None, LogNormal, and LogPearson III. If the user did not select

the option to transform the data to log space (General tab), then the only available choices for distribution will be None, Normal and Pearson III.

Generalized Skew

There are three options contained within the generalized skew setting: Use Station Skew, Use Weighted Skew, and Use Regional Skew. The default skew setting is **Use Station Skew**. With this setting, the skew

of the computed curve will be based solely on computing a skew from the data points.

The Use Weighted

Skew option requires the user to enter a generalized regional skew and a Mean-Square Error (MSE) of the generalized regional

Generalized Skew	
Ose Station Skew	
O Use Weighted Skew	
🔘 Use Regional Skew	
Regional Skew:	0.000
Reg. Skew MSE:	0.302

skew. This option weights the computed station skew with the generalized regional skew. The equation for performing this weighting can be found in Bulletin 17B (Equation 6). If a regional skew is taken from Plate I of Bulletin 17B (the skew map of the United States), the value of MSE = 0.302.

The last generalized skew option is **Use Regional Skew**. When this option is selected, the user must enter a generalized regional skew and an MSE for that skew. The program will ignore the computed station skew and use only the generalized regional skew.

Expected Probability Curve

This setting has two options: Compute the expected probability curve and do not compute the expected probability curve. The default setting is to have the expected probability curve computed. When computed, this curve will be shown in both the tables and the plots as

Expected Probablity Curve
⊙ Compute Expected Prob. Curve
O Do Not Compute Expected Prob. Curve

an additional curve to the computed curve. The expected probability adjustment is an attempt to correct for a certain bias in the frequency curve computation due to the shortness of the

record. Please review the discussion in Bulletin 17B about the expected probability curve adjustment for an explanation of how and why it is computed. The use of the expected probability curve is a policy decision. It is most often used in establishing design flood criteria. The basic flood frequency curve without the expected probability curve adjustment is the curve used in computation of confidence limits, risk, and in obtaining weighted averages of independent estimates of flood frequency discharge (WRC, 1982).

Compute

Once the new analysis has been defined, and the user has all of the General, Options, and Settings information selected the way they want, performing the computations is simply a matter of pressing the **Compute** button at the bottom of the Generalized Frequency editor.

Once the compute button is pressed, the frequency computations are performed. If the computations are successful, the user will receive a message that says "Compute Complete". At this point, the user can begin to review the results of the Analytical Frequency computations.

Multiple General Frequency analyses can be computed using the **Compute Manager**. Select the **Analysis**-**Compute Manager** menu option to open the Compute Manager. Select the analyses to be computed and then press the **Compute** button. Close the compute dialogs and Compute Manager when the program finished computing the analyses.

Tabular Results

The **Tabular Results** tab will bring up a table of results for the Analytical Frequency analysis. An example of the results tab is shown in Figure 6-4.

As shown in Figure 6-4, the window contains three tables. The top table contains results of the computed frequency curve. The very left column of the top table is the Percent Chance Exceedance for all the

computed values. The next three columns in the top table contain the computed frequency curve and the 95% and 5% confidence limits that correspond to that computed curve. The last three columns of the top table contain a computed frequency curve and confidence limits for an analysis based on user-adjusted statistics for the mean, standard deviation, adopted skew, and equivalent years of record. User entered adjusted statistics are an option that the user can set on the **Plot** tab, which is discussed in detail in the next section of this manual. If the user has not entered adjusted statistics, then these columns will be empty.

Name:		uency -Ridgwa								
	Ridgway General Frequency Analysis									
Description:										
Data Set:	CLAR	CLARION RIVER-RIDGWAY, PA-FLOW-ANNUAL PEAK								
DSS File Name:	/Docu	iments and Settings/q0h	ecmjf/My Document	ts/SSP Projects/Cla	rion River/Clarion	_River.dss				
Report File: uencyResults\Ridgway_General_Frequency_Analysis\Ridgway_General_Frequency_Analysis.rpt										
General Options Analytical Graphical										
Settings Tabul	ar Res	ults Plot								
Percent Char	nce	Cur	ve based on Data		Curve base	d on User-Adjuste	d Statistics			
Exceedanc	nce Computed Confidenc Curve Flow in				Computed Curve	Confidenc Flow in				
		Flow in CFS	0.95	0.05	Flow in CFS	0.95	0.05			
	0.2	67,541.3	139,913.9	42,532.1	77,405.8	106,783.0	59,741.3			
	0.5	52,729.6	101,479.7	34,652.2	58,493.5		46,355.9			
	1.0	43,153.0	78,325.4	29,325.3	46,740.5		37,814.2			
	2.0 34,803.6		59,405.5	24,483.4	36,839.0		30,441.2			
	5.0 25,403.		39,775.4	18,729.5	26,130.1	31,749.5	22,218.2			
	10.0 19,352.0		28,275.4	14,779.7 11,071.2	19,520.0 13,943.9		16,957.4			
	20.0	14,055.0 7,845.2	9,885.9	6,205.5	7,701.6	8,604.5	12,350.3 6,884.8			
	80.0	4,544.0	5,775.1	3,328.5	4,532.3		3,946.0			
	90.0	3,465.2	4,519.9	2,390.9	3,519.7		2,999.7			
	95.0	2,790.7	3,739.2	1,824.4	2,891.5		2,417.7			
	retorn (Statistics	Numb	er of Events						
Statistic	stema	Value	Event	Number	_					
Mean	3.906 Historic Events			0						
Standard Dev				0						
Station Skew			Low Outliers		0 1001	Fransformation: O	n			
Regional Skew			Zero Or Missing				 ogPearsonIII			
Weighted Skew	Weighted Skew		Systematic Events		24	ipution. Li	ogrearsonni			
Adopted Skew 0.233		0.233	Historic Period							
Plot Analytical Compute Curve View Report Print OK Cancel Apply										

Figure 6-4. Tabular Results Tab for Analytical Analysis.

Two additional tables are shown at the bottom of the window: System Statistics and Number of Events. The **System Statistics** table consists of the mean, standard deviation, station skew, user entered

regional skew, weighted skew (weighted between station skew and regional skew), and the adopted skew for the analysis. The **Number of Events** table contains the number of historic events, high outliers, low outliers, zero or missing values, systematic events, and the number of years in the historic period (this value only comes into play if the user entered historic data).

Additionally, the lower right portion of the table will show if Log Transform is On or Off, and which analytical distribution was selected for the analysis.

Plot

In addition to tabular results, a **Plot** tab is available for viewing a graphical plot of both the computed frequency curve, as well as a computed curve based on any user-adjusted statistics. When the Plot tab is selected the window will change to what is shown in Figure 6-5.

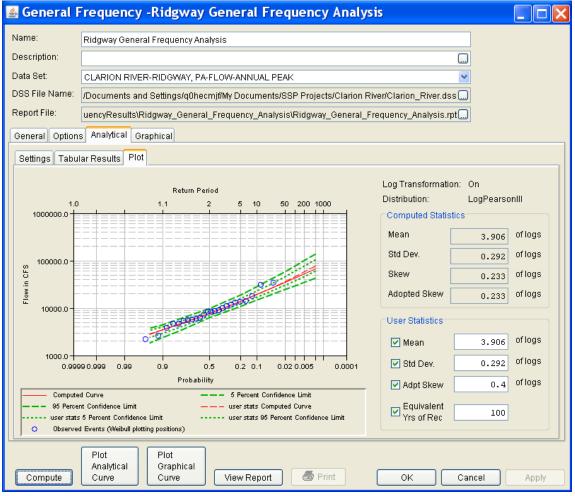


Figure 6-5. Plot Tab of the Generalized Frequency Analytical Analysis.

As shown in Figure 6-5, the plot contains the computed frequency curve, 95 and 5% confidence limits, and raw data points plotted by the user selected plotting position method. The computed statistics for the frequency curve are shown in a table on the right side of the window. Below the computed statistics is a table labeled "User Statistics". There is a check box and a data entry field for the Mean, Standard Deviation, Adopted Skew, and Equivalent Years of Record. The user can enter values into any or all of these fields. Turning on the check box then enacts that field to be used in computing a curve with the user entered statistic overriding the computed value from the raw data. The user statistics option allows the user to see how the curve would change if any or all of the statistics were different. When data is entered into the user statistics fields, and the check boxes are turned on, the user must press the compute button again in order for the computations to be performed with the user entered statistics. After the compute button is pressed, both the plot and the table on the Tabular Results tab will be updated to reflect any user entered statistics.

Graphical Frequency Analysis

In addition to an analytical frequency analysis which uses a statistical distribution fit to the data, the user has the option to graphically fit a curve to the data. A graphical fit can be very useful when the available analytical distributions do not provide a good fit to the data. One example of when a graphical frequency analysis is most appropriate is when plotting a frequency curve for flow data that is downstream of a flood control reservoir. Analytical frequency distributions are often not appropriate for fitting flow data that is significantly regulated by upstream reservoirs. In general, a portion of the flow frequency data for a highly regulated stream will be very flat in the zone in which upstream regulation can control the flows for a range of frequencies. This type of data lends itself to a graphical fit analysis over the use of an analytical equation. Another example of using a graphical fitting technique over an analytical curve is when trying to compute a frequency curve to annual peak stage data at a point on a river. Often the stages will flatten out with decreased frequencies when flows go out into the overbank and floodplain area. Again, this type of data is fitted much better using a graphical fit curve instead of an analytical distribution.

When the **Graphical** tab is selected, the editor will display a plot and table as shown in Figure 6-6. In the plot, the data will be plotted using the user selected plotting position method. The table to the right of the plot allows the user to enter data values for the frequency ordinates defined on the Options tab. When the user enters values in this table, those values will be plotted as a line on the plot after the **Compute** button is pressed. The idea is to enter values in the table that will create a best fit line of the data, based on the user's judgment.

HEC-SSP User's Manual

Chapter 6 - Performing a Generalized Frequency Analysis

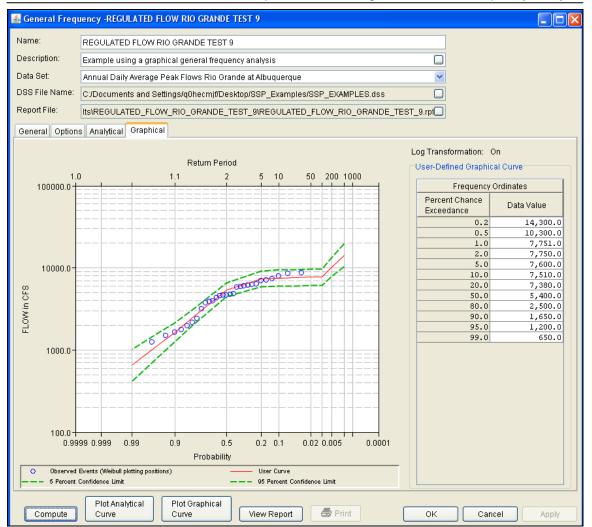


Figure 6-6. Graphical Analysis Tab of the Generalized Frequency Editor.

Viewing and Printing Results

The user can view output for the frequency analysis directly from the Generalized Frequency editor (Tabular and Graphical output) or by using the plot and view buttons at the bottom of the editor. The output consists of tabular results, an analytical frequency curve plot, a graphical frequency curve plot, and a report documenting the data and computations performed.

Tabular Output

Once the computations for the analytical frequency analysis are completed, the user can view tabular output by selecting the **Tabular**

Results tab under the **Analytical** analysis tab. The details of this table were discussed under the analytical analysis option above.

The tabular results can be printed by using the **Print** button at the bottom of the Generalized Frequency editor. When the print button is pressed, a window will appear giving the user options for how they would like the table to be printed.

Graphical Output

Graphical output of the analytical frequency curve can be obtained by selecting either the **Plot** tab under the analytical analysis tab, or by pressing the button labeled **Plot Analytical Curve** at the bottom of the general frequency editor. When the Plot Analytical Curve button is pressed, a frequency curve plot will appear in a separate window as shown in Figure 6-7.

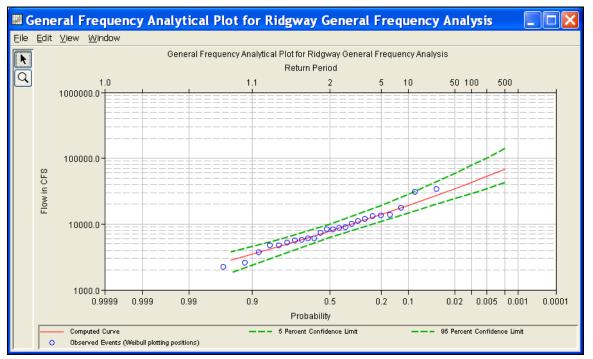


Figure 6-7. Analytical Analysis Frequency Curve Plot.

The analytical frequency curve plot can be sent to the printer by selecting the **Print** option from the **File** menu at the top of the window. Additional printing options available from the File menu are Page Setup, Print Preview, and Print Multiple (used for printing multiple graphs on the same page). The graphic can also be sent to the Windows Clipboard by selecting **Copy to Clipboard** from the File menu. Additionally, the plot can be saved to a file by selecting the **Save As** option from the File menu. When the Save As option is selected, a window will appear allowing the user to select a directory,

enter a filename, and select the format for saving the file. Currently four file formats are available for saving the graphic to disk: windows metafile, postscript, JPEG, and portable network graphic.

The data contained within the plot can also be tabulated by selecting **Tabulate** from the File menu. When this option is selected, a separate window will appear with the data tabulated. Additional options are available from the File menu for saving the plot options as a template (**Save Template**) and applying previously saved templates to the current plot (**Apply Template**).

The **Edit** menu contains several options for customizing the graphic. These options include Plot Properties, Configure Plot Layout, Default Line Styles, and Default Plot Properties. Also, a shortcut menu will appear with further customizing options when the user right-clicks on a line on the graph or the legend. The graphic customizing capabilities within HEC-SSP are very powerful, but are also somewhat complex to use. The code used in developing the plots in HEC-SSP is the same code that is used for developing plots in HEC-DSSVue and several other HEC software programs. Please refer to the HEC-DSSVue User's Manual for details on customizing plots.

A plot of the graphical frequency curve can be obtained by pressing either the **Graphical** tab, or by pressing the button labeled **Plot Graphical Curve** at the bottom of the general frequency editor. When the Plot Graphical Curve button is pressed, a frequency curve plot will appear in a separate window as shown in Figure 6-8. All of the same options for tabulating, printing, and sending results to the windows clipboard are available for this plot as they are for the analytical frequency curve plot.

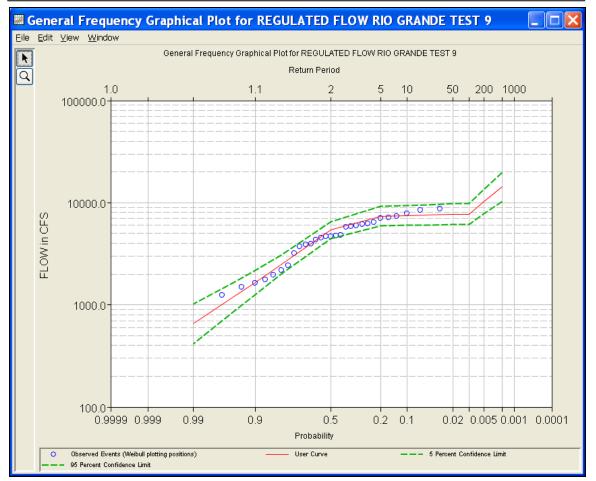


Figure 6-8. Graphical Analysis Frequency Curve Plot.

Viewing the Report File

When the General Frequency analysis computations are performed, the computations module writes a report file. The report file lists all of the input data and user settings, plotting positions of the data points, intermediate results, each of the various statistical tests performed (i.e. high and low outliers, historical data, etc...), and the final results. This file is often useful for understanding how the software arrived at the final frequency curve.

To view the report file press the **View Report** button at the bottom of the General Frequency analysis window. When this button is pressed, a window will appear containing the text report as shown in Figure 6-9.

Ridgway_General_F	requency	_Anal	ysis.rpt			X		
<u>Eile E</u> dit <u>S</u> earch F <u>o</u> rmat								
File: Irion River/GeneralFrequencyResults\Ridgway_General_Frequency_Analysis\Ridgway_General_Frequency_Analysis.rpt								
Based on 24 events, 10 percent outlier test value K(N) = 2.467								
0 high outlier(s) identified above test value of 42,311.6								
Final Results								
<pre><< Plotting Positions >> CLARION RIVER-RIDGWAY, PA-F</pre>	LOW-ANNUAL 1	PEAK						
Events Analyzed	 I	Order	ed Events		-			
I FLOW		Water	FLOW	Weibull Dist Dec	1			
Day Mon Year CFS	Rank -	iear 	CFS	PIOC POS	1			
13 Dec 1940 5,660.0 19 Jul 1942 34,000.0		1942 1996	34,000.0 30,400.0	4.00 8.00				
26 May 1943 13,400.0		1998	17,500.0	12.00	1			
17 Mar 1944 7,300.0	4	2004	13,700.0	16.00	1			
03 Mar 1945 10,000.0 28 May 1946 13,100.0	5 6	1943 1946	13,400.0 13,100.0	20.00 24.00	1			
05 Apr 1947 8,280.0		1994	11,700.0	28.00				
12 Apr 1948 8,680.0	8	1952	10,900.0	32.00	I .			
22 May 1949 3,710.0 29 Mar 1950 8,280.0	9 10	1945 1953	10,000.0 8,900.0	36.00 40.00	1			
25 Nov 1950 17,500.0	1 11	1933	8,680.0	40.00				
18 Jan 1952 10,900.0	12	1950	8,280.0	48.00	i .			
23 May 1953 8,900.0	13	1947	8,280.0	52.00	1			
14 Aug 1994 11,700.0 20 Jan 1995 2,530.0	14 15	1944 1999	7,300.0 6,030.0	56.00 60.00				
19 Jan 1996 30,400.0	16	2003	5,920.0	64.00	i .			
08 Nov 1996 4,630.0	17	1941	5,660.0	68.00	1			
08 Jan 1998 5,510.0 24 Jan 1999 6,030.0	18 19	1998 2000	5,510.0 5,220.0	72.00 76.00	1			
1 04 3mm 2000 5 220 0	1 20	2002	4,660.0	80.00	i			
17 Dec 2000 2,190.0	21	1997	4,630.0	84.00	1	=		
13 May 2002 4,660.0 01 Aug 2003 5,920.0	22 23	1949 1995	3,710.0 2,530.0	88.00 92.00	1			
18 Sep 2004 13,700.0	1 24	2001	2,190.0		i .			
	-				1			
< Skew Weighting >>								
Based on 24 events, mean-sq				0.226				
Mean-square error of region	al skew is u	undefine	d.					
<pre><< Frequency Curve >> CLARION RIVER-RIDGWAY, PA-F</pre>	LOM-ANNIAL	PEAK						
Computed Expected			onfidence L					
Curve Probability Flow, CFS	Chance Exceedance		0.05 Flow, CF	0.95				
67,541.3		13	9,913.9	42,532.1		✓		
						>		
				1:11	1-1	1:1		
				1.1.	1.1	1.1		

Figure 6-9. General Frequency Analysis Report File.

Plots, tables and reports can also be created by selecting menu options from the **Results** menu. At least one General Frequency analysis must be selected in the study tree before selecting one of the menu options on the Results menu. Results from multiple analyses are combined in one graph if they are selected in the study tree when the **Graph** menu option is selected. The **Results Summary Report** menu option will create a summary table of statistics and frequency curve ordinates for the selected analyses as shown in Figure 6-10.

ile <u>E</u> dit <u>S</u> earch F <u>o</u> rmat													
le: C:\Temp\SSP_Examples\Genera	alFrequencyResults\GeneralFrequencySumma	ry.rpt											
Seneral Frequency Summary Rep Mon Jan 05 22:19:31 PST 2009 Fable 1 Summary of Statistics	900Tt 												
Analysis Jame	Data Name	Mean	Std Dev	Sta		J Ught	Adpt						
General Frequency FFA Test 1 General Frequency FFA Test 2 General Frequency FFA Test 3		3.378 3.547 3.741	0.255 0.447 0.231 0.678	0.73	5 -0.300 3 0.500	0.074	0.677 0.074 0.586 -0.472	0 0 0	0 1 0 0	0 0 0 0 1 0 1 6	24 39 38 42	82	
	Curve Ordinates												
Analysis Name	Data Name		99	95	90	80	50	20		10	5	2	
	FISHKILL CREEK-BEACON-FLOW FLOYD RIVER-JAMES IA-FLOW			8.5 1.3 4.6	1192.1 1 955.3 1 2901.0 3	L438.2 2 L471.8 3 3490.3 5	194.8 3 404.8 8 238.5 8	657.1 018.8 449.0 450.0	49. 126: 111:	59.9 38.5 81.3	6506.1 18470.8 14322.2 9289.3	9031.5 28425.7	1 3 2 1
General Frequency FFA Test 1 General Frequency FFA Test 2 General Frequency FFA Test 3 General Frequency FFA Test 4	BACK CREEK-JONES SPRINGS, WV-FLOW ORESTIMBA CREEK-NEWMAN, CA-FLOW	2004	.2 6	1.8	10115								
General Frequency FFA Test 1 General Frequency FFA Test 2 General Frequency FFA Test 3 General Frequency FFA Test 4	BACK CREEK-JONES SPRINGS, WV-FLOW ORESTIMEA CREEK-NEWMAN, CA-FLOW	15	.2 6	1.8									>

Figure 6-10. Summary Table for Selected General Frequency Analyses.

CHAPTER 7

Performing a Volume-Duration Frequency Analysis

The current version of HEC-SSP allows the user to perform a volumeduration frequency analysis of flow data. The user can choose between different analytical distributions as well as perform a graphical fit to the data. This chapter discusses in detail how to use the volume-duration frequency analysis editor with HEC-SSP.

Contents

- Starting a New Volume-Duration Frequency Analysis
- General Settings and Options
- Extracting the Volume-Duration Frequency Data
- Analytical Frequency Analysis
- Graphical Frequency Analysis
- Viewing and Printing Results

Starting a New Volume-Duration Frequency Analysis

A volume-duration frequency analysis can be started in two ways within the software, either by right clicking on the Volume-Frequency Analysis folder in the study explorer and selecting **New**, or by going to the **Analysis** menu and selecting **New** and then **Volume-Frequency Analysis**. When a new volume-frequency analysis is selected, the Volume-Duration Frequency editor will appear as shown in Figure 7-1.

Volume-Duration Frequency -*		
Volume-Duration Frequency -* Name: Description: Data Set: DSS File Name: Report File: General Options Duration Table Analytical Graphic Log Transform O Use Log Transform O Do not use Log Transform Maximum or Minimum Analysis Analyze Maximums Year Specification O Water Year (starts Oct 1) C Calendar Year (starts Jan 1) O Other	Image: Second State Sta	Time Window Modification End Points DSS Range is Start date I other is a subset of the year Season To define a subset of the year season start: season end: I other is a subset of the year season start: Season end: I other is a subset of the year season start: Season end: I other is a subset of the year Season To define a subset of the year season start: Season end: I other is a subset of the year Season To define a subset of the year Season start: Season end: I other is a subset of the year Season is a subset of the year
Plot Yearly Data Plot Duration Compute Plot Duration Data Plot Analytical Curve	Plot Graphical Curve View Report	Print OK Cancel Apply

Figure 7-1. Volume-Duration Frequency Analysis Editor.

The user is required to enter a **Name** for the analysis; while a **Description** is optional. A data set (daily average flow) must be selected from the available data sets stored in the current study DSS file (see Chapter 4 for importing daily flow data into the study). Once a **Name** is entered and a data set is selected, the **DSS File Name** and **Report File** will automatically be filled out. The DSS filename is by default the same name as the study DSS file. The report file is given the same name as the analysis with the extension ".rpt".

General Settings and Options

Once the analysis name and data set are selected, the user can begin defining the analysis. Five tabs are contained on the Volume-Duration Frequency editor. The tabs are labeled **General**, **Options**, **Duration Table**, **Analytical**, and **Graphical**. This section of the manual explains the use of the General and Options tabs.

General Settings

The first tab contains general settings for performing the frequency analysis (Figure 7-1). These settings include:

- Log Transforms
- Plotting Positions
- Maximum or Minimum Analysis
- Year Specification
- Time Window Modification

Log Transform

There are two options contained within the Log Transform setting: Use Log Transform and Do not use Log Transform. If the user selects Use Log Transform, then the logs of the data will be computed first, and the frequency analysis will be performed on

Log Transform

💿 Use Log Transform

🔘 Do not use Log Transform

the logs of the data. If the user selects **Do not use Log Transform**, then the frequency analysis will be performed on the raw data values without taking the logs of the data. The default setting is **Use Log Transform**.

Plotting Positions

Plotting positions are used for plotting the raw data points on the graph. There are four options for plotting position within HEC-SSP:

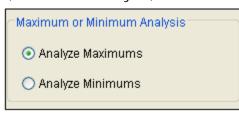
Plotting Position								
⊙ Weibull (A and B = 0)								
🔿 Median (A and B = 0.3)								
🔿 Hazen (A and B = 0.5)								
O Other (Specify A, B)								
Plotting position computed using formula (m-A)/(n+1-A-B)								
Where:								
m=rank, 1=largest								
N=Number of Years								
A,B=Constants								
A:								
B;								

Weibull, Median, Hazen, and user entered coefficients. The default method is the Weibull plotting position method.

The generalized plotting position equation is:

$$P = \frac{(m-A)}{(n+1-A-B)}$$

Where: m = rank of flood values with the largest equal to 1.


- n = number of flood peaks in the data set.
- A & B = constants dependent on which equation is used (Weibull A and B=0; Median A and B = 0.3; and Hazen A and B=0.5).

Plotting positions are estimates of the exceedance probability for each data point. Different methods can give different values for the probabilities of the highest and lowest points in the data set. The plotting of data on the graph by a plotting position method is only done as a guide to assist in evaluating the computed curve. The plotting position method selected does not have any impact on the computed curve.

Maximum or Minimum Analysis

A volume-frequency analysis can be performed using annual maximum or minimum flows. A maximum flow analysis could be used for determining the amount of reservoir storage required for a flood of specific frequency. A minimum flow, or low flow analysis, could be

used determine if a river could supply a given demand. A low flow analysis could also be beneficial for water quality and reservoir storage projects. There are two options contained in the Maximum or Minimum Analysis

section. If **Analyze Maximums** is selected, then the program will extract annual maximum volumes for all durations. The program will extract annual minimum volumes for all durations if **Analyze Minimums** is selected.

Year Specification

This option allows the user to define the beginning and ending date for what will be considered as the analysis year for extracting the data. These dates are used for extracting the annual maximum or minimum flows, in order to get one value for each analysis year. It is important to choose a start date that captures all flood events from a certain hydrologic regime. If high flows generally occur between November

Year Specification
• Water Year (starts Oct 1)
🔿 Calendar Year (starts Jan 1)
Other
starting
Plot Yearly Data

and May, then the year should not start between theses months. This will minimize the possibility that the same flood event is used for consecutive years. There are three options contained in the Year Specification section. If **Water Year** is selected, the program uses a starting date of October 1 and an ending date of September 30. If

Calendar Year is selected, the program uses a starting date of January 1 and an ending date of December 31. The **Other** option lets the user define the starting date. One way to determine when the year should begin is to plot each year of record on top of one another, as shown in Figure 7-2. The program will create a graph like the one shown in Figure 7-2 when the **Plot Yearly Data** button is pressed. This data set is from an area that experiences both snowmelt floods and summer/fall rain floods. Starting the year on January 1 would be more appropriate for this data set because a few large flood events occurred around October 1.

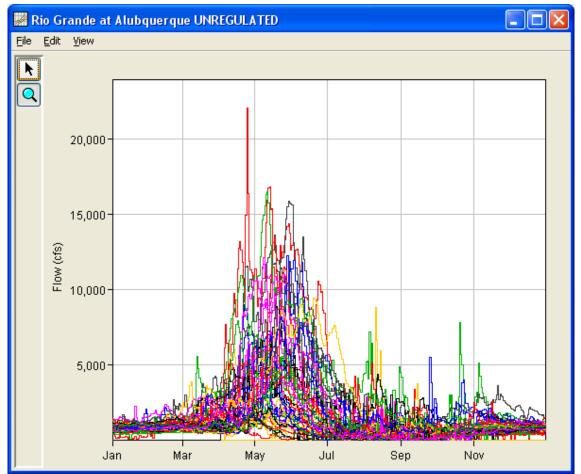


Figure 7-2. Plot Showing when Flood Events Typically Occur.

Time Window Modification

This option allows the user to narrow the time window used for the analysis. When left unchecked, the program will use all of the data contained in the selected data set. The user can enter either a start or end date or both a start and end date. If a start and/or end date are used, they must be dates that are included within the selected data set. The date range for the selected data set is shown in the editor just above the Start Date field.

An additional option at the bottom of the time window modification section allows the user to define a shorter duration, a **Season**, within the year in which the program extracts maximum or minimum flows. This option allows the user to analyze floods that typically occur during a specific season, like snowmelt floods. When left unchecked, the program will examine all flow records during the year. The season start and end dates must be entered using a two digit day followed by the month, example 15May. The season start and end dates must fall

within a year as defined in the Year Specification. The user must enter both start and end dates to define the season subset.

Time Window Modification					
End Points					
DSS Range is					
🗖 start date					
🗌 end date					
Season					
To define a subset of the year					
season start: season end:					
NOTE: season must be within a year, as defined in the Year Specification					

Options

In addition to the general settings, there are also several options available to the user for modifying the computation of the volumefrequency curves. These options include:

- Flow-durations
- User-Specified Frequency Ordinates
- Output Labeling
- Low Outlier Threshold
- Historic Period Data

When the Options tab is selected, the Volume-Duration Frequency editor will appear as shown in Figure 7-3.

General Options Duration Table Analytical Graphical	- Hann On a Mari Fran		- Ustair Davied	Data		
Flow Durations Change or add to default values Duration in days 1 7 15 60 120 Output Labeling	User Specified Free	m Table below cent 0.1 0.2 0.5 1.0 5.0 1.0 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.5 0.1 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Historic Period	ic Data d	High Thresho	<u> </u>
Data Name DSS data name is FLOW	Use Low Outlie		Historic Event	s		<u> </u>
Change label FLOW Data Unit DSS Data Unit is CFS Change label CFS	Duration 1-day 7-day 15-day 60-day 120-day	Low Threshold	Year	1-day	7-day	15-day

Figure 7-3. Volume-Duration Frequency Editor with Options Tab Selected.

Flow-Durations

This option lets the user define which durations are used in the volume-frequency analysis. The program will extract annual maximum

Flow Durations	
Change or add to default values	
Duration in days	[
	1
	3
	- 7
	15
	30
	60
	90
· · · · · · · · · · · · · · · · · · ·	120
· · · · · · · · · · · · · · · · · · ·	183

or minimum volumes based on the durations defined in this table. The default durations are 1, 3, 7, 15, 30, 60, 120, and 183 days. Check the box next to Change or add to default values to change or add additional durations to the analysis. Once this box is checked, the user can add/remove rows and edit the duration values. To add or remove a row from the table, select the row(s), place the mouse over the highlighted row(s) and click the right

mouse button. The shortcut menu contains options to **Insert Row(s)** and **Delete Row(s)**. The program will use the default durations, even if they are not contained in the table, when the **Change or add to default values** option is not checked.

User Specified Frequency Ordinates

User Specified Frequency Ordinates					
Frequency in Percent					
	0.2				
	0.5				
	1.0				
	2.0				
	5.0				
	10.0				
	20.0				
	50.0				
	80.0				
	90.0				
	95.0				
	99.0				

This option allows the user to change the frequency ordinates used for creating result tables and graphs. The default values listed in percent chance exceedance are 0.2, 0.5, 1, 2, 5, 10, 20, 50, 80, 90, 95, and 99. Check the box next to Use Values from Table **below** to change or add additional values. Once this box is checked, the user can add/remove rows and edit the frequency values. To add or remove a row from the table, select the row(s), place the mouse over the highlighted row(s) and click the right mouse button. The shortcut menu

contains options to **Insert Row(s)** and **Delete Row(s)**. The program will use the default values, even if they are not contained in the table, when the **Use Values from Table below** option is not checked. Finally, all values in the table must be between 0 and 100.

Output Labeling

This option allows the user to change the default labels for data contained in the output tables and plots. The user can change both the name of the data and how the units of the data are labeled.

Output Labeling	
Data Name	
DSS data name is	FLOW
📃 change label	FLOW
Data Unit	
DSS Data Unit is	CFS
🗌 change label	CFS

Low Outlier Threshold

High and low outlier tests are based on the procedures outlined in Bulletin 17B, and are applied in the same manner in the Volume-Duration Frequency Analysis. The calculated outlier magnitudes, by

the Bulletin 17B procedure, are used as default values for the high and low outlier thresholds in HEC-SSP. The user has the option to enter a different low outlier threshold for each duration. If a value is entered for the low outlier threshold, then this value will override the computed value

Duration	Low Threshold
-day	
-day	
5-day	
0-day	
20-day	

from the Bulletin 17B methodology. When analyzing maximum flows, HEC-SSP will identify both high and low outliers. However, only low outliers will be removed from the data set when performing the analysis. If a high outlier is identified in the data set, the analysts should try to incorporate historical period information to extend the time period for which the high outlier(s) is considered to be the maximum value(s). Further discussion of outlier thresholds can be found in Bulletin 17B and the HEC-SSP Statistical Reference Guide. To use the low outlier threshold, simply check the box and enter a value for one duration or all durations.

When **Analyzing Minimums** is selected on the General tab, then the Low Outlier Threshold criteria becomes the High Outlier Threshold. When applying the outlier tests, HEC-SSP will identify both high and low outliers. However, only high outliers will be removed from the data set when performing the analysis. If a low outlier is identified in the data set, the analysts should try to incorporate historical period information to extend the time period for which the low outlier(s) is considered to be the minimum value(s).

Historic Period Data

Any historic data that provides reliable estimates outside the systematic record should be used in order to modify and improve the frequency computations. Information outside of the systematic record can often be used to extend the record of the largest events to a historic period much longer than that of the systematic record. HEC-SSP uses historic data as recommended in Bulletin 17B. This calculation is applied in the same manner in the Generalized Frequency Analysis. To use historic data, check the box labeled **Use Historic Data**. The user can enter a starting year for the historic period, ending year for a historic period and a High Threshold value for each duration as shown in Figure 7-4. If the user enters a high threshold

value, then any data in the systematic record greater than that value will also be treated as a historical annual maximum. The user can also enter historic data that are not contained in the systematic record. This is done in the table at the bottom labeled **Historic Events**. If a start year is not entered, then the assumed start year is the earliest year of the systematic record and any historical values that have been entered. If an end year is not entered, then the assumed end year is the latest year in the systematic record and any entered historic values. Further discussion of the use of historical data can be found in Bulletin 17B and the HEC-SSP Statistical Reference Guide. If **Analyze Minimums** is selected on the General tab then the High Threshold becomes the Low Threshold. The program will treat systematic values that are lower than the low threshold as historic annual minimums.

Note: The program treats all data in the data set as systematic data. If historic events are included in the data set, then the user can define the analysis time window (General tab – Time Window Modification) so that it only bounds the systematic record. Then define the historic events in the Historic Events table. Instead of using the Time Window Modification option, another option is to enter a High Threshold value so that the historic data point(s) would be treated as historic data (rather than part of the systematic record).

Historic Period Da								
Historic Period								
Start Year:	Start Year:							
End Year:	End Year:							
Duration	Duration High Threshold							
1-day Zulavi								
7-day 15-day								
60-day								
120-day								
Historic Events								
Year	1-day	7-day	15-day					
<			>					

Figure 7-4. Historic Period Data on the Options Tab.

Duration Table

The user can extract the volume-duration data once settings have been defined on the General and Options tabs. When the Duration Table tab is selected, the Volume-Duration Frequency editor will appear as shown in Figure 7-5. The program will compute the annual maximum or minimum average flows for the durations specified on the Options tab when the user presses the **Extract Volume-Duration Data** button at the bottom of the Duration Table.

The program computes the maximum/minimum flows by evaluating the flow record as one continuous record. For each duration, the program computes a time-series of average flow. These time-series are written to the study DSS file and can be viewed using HEC-DSSVue. Then the program extracts the annual maximum/minimum flows and populates the duration table.

When computing the analysis, the program will issue a warning message if any of the maximum/minimum flows occur a specific number of days after the beginning of the year. The number of days is determined by the duration plus five days. For example, for a fifteen-day duration, the program issues a warning if the maximum/minimum is within twenty days after the beginning of the year. If water year is chosen, then the program issues a warning if the maximum/minimum occurs between October 1 – October 20. This warning is an attempt to let the user know if a maximum or minimum flow is generated by an event that began in the previous year. The goal is to prevent a scenario in which the same flow event causes maximum/minimum flows in consecutive years; this is why it is important to choose an appropriate annual starting date.

eneral Opti	ons Duration	Table Analy	/tical Graphic	cal						
	Volume-Duration Data									
Voor		Highest Mean Value for Duration, Average Daily FLOW in CFS								
Year	1		3		7		16	5		
	Date	FLOW	Date	FLOW	Date	FLOW	Date	FLOW		
1913	12/24/1912	1500	12/25/1912	1122	12/26/1912	755	01/02/1913	399		1
1914	09/26/1914	5290	09/27/1914	3187	09/30/1914	1808	09/28/1914	978		
1915	04/27/1915	1530	04/28/1915	1059	05/02/1915	674	12/10/1914	435		
1916	03/04/1916	2040	03/04/1916	1570	11/10/1915	920	11/16/1915	724		
1917	12/18/1916	2860	12/20/1916	2240	12/24/1916	1614	12/30/1916	939		
1918	03/11/1918	3930	03/13/1918	3367	03/17/1918	2255	03/18/1918	1372		
1919	10/31/1918	322	08/02/1919	179	08/03/1919	127	08/03/1919	96		
1920	01/16/1920	6400	01/17/1920	3653	01/21/1920	1698	01/28/1920	849		
1921	01/16/1921	13800	01/17/1921	6073	01/20/1921	3981	01/27/1921	2339		
1922	09/11/1922	3120	12/24/1921	1910	12/27/1921	1138	01/04/1922	588		_
1923	03/31/1923	5630	04/01/1923	2283	04/05/1923	1104	01/25/1923	620		
1924	04/16/1924	1690	04/17/1924	1453	04/21/1924	891	04/28/1924	506		
1925	02/11/1925	2600	10/12/1924	999	10/16/1924	527	10/23/1924	308		
1926	06/15/1926	789	06/16/1926	396	06/18/1926	180	11/18/1925	145		
1927	05/16/1927	3160	05/18/1927	1910	05/19/1927	1279	05/27/1927	801		
1928	12/24/1927	6670	12/25/1927	3040	12/27/1927	1546	12/25/1927	925		
1929	07/26/1929	6820	07/28/1929	2571	08/01/1929	1197	08/09/1929	607		
1930	01/26/1930	1840	01/26/1930	1109	01/30/1930	673		384		
1931	11/19/1930	1510	11/20/1930	831	10/07/1930	511	11/25/1930	348		
1932	02/12/1932	2650	02/07/1932	1846	02/12/1932	1478	02/18/1932	1044		
1933	01/02/1933	3900	01/03/1933	1697	03/08/1933	1118	03/08/1933	672		
1934	04/26/1934	1130	04/28/1934	552	12/27/1933	276	12/26/1933	160		
1935	02/27/1935	2240	02/28/1935	1205	03/03/1935	643	03/12/1935	369		
1936	08/25/1936	2660	08/27/1936	1229	08/31/1936	665	09/08/1936	383		
1937	03/19/1937	4420	03/20/1937	2533	03/23/1937	1235		651		
1938	11/25/1937	2070	02/04/1938	1004	02/03/1938	784	02/12/1938	521		
1939	03/04/1939	1870	03/05/1939	1259	03/07/1939	831	03/13/1939	467		
1940	05/13/1940	4860	05/14/1940	1200	05/15/1940	1029	05/23/1940	537		
1941	10/02/1940	787	10/04/1940	634	10/07/1940	356	10/15/1940	214		
				Extract \	/olume-Duratio	on Data				
	Plot	Plot	Plot	t						
	Duration	Analyti		phical _						
Compute	Data	Curve	Cur		View Report	🛛 🖨 Pri	nt	ок	Cancel	Apply

Figure 7-5. Volume-Duration Table.

The user must **Compute** the analysis before viewing a plot of the volume-duration data. The plot created by pressing the **Plot Duration Data** button, located at the bottom of a Volume-Duration Frequency editor, shows the annual maximum/minimum volumes plotted using the user specified plotting position method, as shown in Figure 7-6.

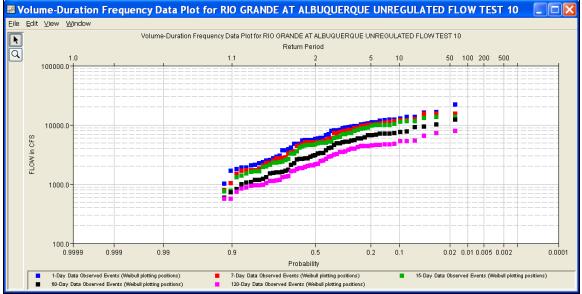


Figure 7-6. Plot of Volume-Duration Data.

Analytical Frequency Analysis

The user can choose between performing an Analytical Frequency Analysis or a Graphical Frequency Analysis once settings have been defined on the General and Options tabs. The Duration Data does not have to be extracted before computing an analysis. The program will automatically extract the duration data when the **Compute** button is pressed. This section of the manual describes how to compute and view results for an Analytical Frequency Analysis.

When the user selects the **Analytical** tab on the Volume-Duration Frequency editor, the window will appear as shown in Figure 7-7. As shown, four additional tabs will appear on the screen: Settings, Tabular Results, Plot, and Statistics. HEC-SSP User's Manual

General Options Duration Table Analytical Graph	hical		
Settings Tabular Results Plot Statistics			
Log Transformation: On	Skew		
Distribution:	🔿 Use Station Skew		
	 Use Weighted Skew Use Regional Skew 		
	Duration	eg. Skew	R.Skew MSE
 Do Not Compute Excpected Prob. 	1	0.3	0.302
	3	0.3	0.302
	7	0.3	0.302
	15	0.3	0.302
	30	0.3	0.302
	60	0.3	0.302
	90	0.3	0.302
	120	0.3	0.302
	183	0.3	0.302
Duration Analytical (Plot Graphical Curve View Report é	🕏 Print 🛛 OK	Cancel Apply

Figure 7-7. Analytical Tab of the Volume-Duration Frequency Editor.

Settings

In addition to settings on the General and Options tabs, there are more options on the Settings tab the user must define in order to perform an Analytical Frequency analysis on the volume-duration data. These settings include:

- Distribution
- Expected Probability Curve
- Skew

Distribution

This option allows the user to select a distribution to perform the frequency analysis. The current version of HEC-SSP contains five

distribution choices: None, Normal, LogNormal, Pearson III, and LogPearson III. If the user has selected the **Use Log Transform** option, located on the General tab, then the available choices for distribution are None, LogNormal, and LogPearson III. If the user has selected the **Do not use Log Transform** option, located on the General tab, then the distribution choices are None, Normal, and Pearson III.

*

Expected Probability Curve

This setting has two options, **Compute Expected Prob. Curve** and **Do Not Compute Expected Prob. Curve**. The default setting is to have the expected probability curve computed. When computed, this

curve will be shown in both the result table and the plot as an additional curve to the computed curve. The expected probability adjustment is an attempt to correct for a certain bias in

Expected Probablity Curve

Compute Expected Prob. Curve

O Do Not Compute Expected Prob. Curve

the frequency curve computation due to the shortness of the record. Please review the discussion in Bulletin 17B about the expected probability curve adjustment for an explanation of how and why it is computed. The use of the expected probability curve is a policy decision. It is most often used in establishing design flood criteria. The basic flood frequency curve without the expected probability curve adjustment is the curve used in computation of confidence limits, risk, and in obtaining weighted averages of independent estimates of flood frequency discharge (WRC, 1982).

Skew

The skew option is only available whenever the analytical distribution is set to PearsonIII or LogPearsonIII. There are three options contained within the skew setting, **Use Station Skew**, **Use Weighted**

Skew, and Use Regional Skew. The default skew setting is Use Station Skew. With this setting, the skew of the computed curve will be based solely on computing a skew from the data points.

The **Use Weighted Skew** option requires the user to enter a generalized regional skew and a mean-square error (MSE) of the

Ose Weighted Ske	9W	
🔘 Use Regional Ske	w	
Duration	Reg. Skew	R.Skew MSE
1	0.3	0.30
3	0.3	0.30
7	0.3	0.30
15	0.3	0.30
30	0.3	0.30
60	0.3	0.30
90	0.3	0.30
120	0.3	0.30
183	0.3	0.30

generalized regional skew. This option weights the computed station skew with the generalized regional skew. The equation for performing this weighting can be found in Bulletin 17B (Equation 6). If a regional skew is taken from Plate I of Bulletin 17B (the skew map of the United States), the value of MSE = 0.302. The **Use Regional Skew** option requires the user to enter a generalized regional skew and a mean-square error (MSE) of the generalized regional skew. The program will ignore the computed station skew and use only the generalized regional skew.

Compute

Press the **Compute** button, located at the bottom of the Volume-

Compute Duration Frequency editor, once options have been set on the General, Options, and Settings tabs. If the compute is successful, the user will receive a message that says **Compute Complete**. At this point, the user can review results from the analytical analysis by selecting the Tabular Results and Plot tabs.

Multiple Volume-Duration Frequency analyses can be computed using the **Compute Manager**. Select the **Analysis**-**Compute Manager** menu option to open the Compute Manager. Select the analyses to be computed and then press the **Compute** button. Close the compute dialogs and Compute Manager when the program finished computing the analyses.

Tabular Results

The **Tabular Results** tab contains a table of results for the analytical frequency analysis. An example of the results table is shown in Figure 7-8. The top portion of this table contains volumes from the analytical frequency curve for each duration and frequency ordinate defined on the Options tab. The Statistics of the analytical frequency curves are contained below the frequency curve ordinates. The statistics include the mean, standard deviation, station skew, regional skew, weighted skew, adopted skew, number of years of record, and number of years with zero or missing flow.

User-adjusted statistics can be defined by the user on the **Statistics** tab. If the user has not entered statistics on the Statistics tab, then the results table will look similar to Figure 7-8. If the user does enter statistics on the Statistics tab, then the results table will include the adjusted mean, adjusted standard deviation, and adjusted skew. If specified by the user, the program will use the user-adjusted statistics when computing the analytical curves.

Chapter 7 - Performing a Volume-Duration Frequency Analysis

General Options Duration Table Analytical Graphical							
Settings Tabular Results Plot Statistics							
Volume-Duration Frequency Curves for South Fork Wailua River, Average Daily FLOW in CFS							
Percent Chance Exceedance	1	3	7	15	30	60	
0.2	14304.0	7093.4	4012.9	2374.7	1479.0	974.2	
0.5	11993.6	6041.0	3428.9	2049.2	1304.8	860.9	
1.0	10354.8	5283.0	3009.3	1812.3	1173.4	775.8	
2.0	8804.8	4555.4	2607.1	1582.5	1041.9	691.1	
5.0	6881.8	3635.8	2099.0	1288.0	866.8	578.8	
10.0	5510.8	2965.9	1728.5	1069.9	731.8	492.3	
20.0	4193.8	2308.1	1363.5	851.8	591.8	402.7	
50.0	2456.0	1410.3	860.7	545.3	385.1	269.8	
80.0	1414.5	847.1	538.8	344.4	243.0	177.0	
90.0	1053.0	644.5	420.4	269.4	188.6	140.8	
95.0	822.4	512.4	341.9	219.4	152.0	116.0	
99.0	512.8	330.4	231.1	148.2	99.7	79.7	
Statistics	1	3	7	15	30	60	
Mean	3.385	3.144	2.932	2.733	2.576	2.425	
Standard Dev.	0.281	0.259	0.240	0.234	0.230	0.212	
Station Skew	-0.109	-0.122	-0.064	-0.105	-0.249	-0.185	
Regional Skew							
Weighted Skew							
Adopted Skew	-0.109	-0.122	-0.064	-0.105	-0.249	-0.185	
#Years	97	97	97	97	97	97	
# Zero/Missing	0	0	0	0	0	0	
Compute Plot Duration Plot Analytical Plot Graphical Curve View Report 🖨 Print OK Cancel Apply							

Figure 7-8. Tabular Results for a Volume-Frequency Analysis.

Plot

In addition to tabular results, a **Plot** tab is available for viewing results, as shown in Figure 7-9. The results graph includes the systematic annual maximum/minimum volumes, plotted using the specified plotting position method, and the analytical frequency curves. The analytical frequency curves are based on the computed statistics or user-adjusted statistics if they are defined on the Statistics tab.



Figure 7-9. Plot of Analytical Results for a Volume-Frequency Analysis.

Statistics

As discussed in EM 1110-2-1415, a necessary step in a volumefrequency analysis is to make sure the analytical frequency curves are consistent across all durations (USACE, 1993). In some situations, frequency curves from different durations might cross one another. The **Statistics** tab contains tools allowing the user to modify the mean, standard deviation, and skew to make sure frequency curves do not cross one another.

When the user selects the **Statistics** tab, the window will appear as shown in Figure 7-10. The upper portion of the Statistics tab contains a plot of the computed and user-adjusted statistics. The user has the option of choosing the parameter to be plotted in the comparison graph. Computed statistics are plotted as black data points and user-adjusted statistics are plotted as blue data points. The first table, **Sample Statistics**, contains the statistics computed from the systematic data. In addition, the adopted skew value in this table can be the station skew, weighted skew, or regional skew. The adopted skew is set by the user on the **Settings** tab. The lower table is where the user enters the adjusted statistics. Before entering adjusted statistics entered in this table are used when the program computes the analytical frequency curve.

Chapter 7 - Performing a Volume-Duration Frequency Analysis

eneral Options [Duration Table	Analytical	Graphical								
Settings Tabular F	Results Plot St	tatistics									
-0.00											
-0.05											
-0.10			•				Log Transformation:	On			
-0.15				•		•	Distribution:	LogPearson			
-0.10 -0.20							X-axis Parameter	-	 Y-axis Param	eter	
-0.25	•						Mean	*	Skew		*
-0.30								Updat	e Plot		
-0.35								Coput			
2.5	2.6 2.7	2.8 N	2.9 i Aean	3 3.1	3.2 3	3					
Sample Statistics	1		3			7	15	30		60	
Mean Standard Dev.		3.385 0.281		3.144 0.259		2.932 0.240	2.733 0.234		2.576 0.230		2.425
Station Skew		-0.109		-0.122		-0.064	-0.105		-0.249		-0.185
Adopted Skew		-0.109		-0.122		-0.064	-0.105		-0.249		-0.185
Use Adjusted Statistics	1		3	•	7	,	15	30		60	
🗹 Mean		3.385		3.144		2.932	2.733		2.576		2.425
Standar		0.05		0.4		0.45			0.05		
Adopted		-0.05		-0.1		-0.15	-0.2		-0.25		-0.3
	Plot Duration Data	Plot Ar Curve	nalytical	Plot Grap Curve	hical	View Repor	t 🕘 Print	ОК	Ca	ncel	Apply

Figure 7-10. Statistics Tab in the Volume-Duration Frequency Editor.

Graphical Frequency Analysis

In addition to an analytical frequency analysis, which uses a statistical distribution to fit the data, the user has the option to graphically fit the data. A graphical fit to data can be very useful when the available analytical distributions do not provide a good fit. One example of when a graphical frequency analysis is more appropriate is when plotting a frequency curve for flow data that is downstream of a flood control reservoir. Analytical frequency distributions are often not appropriate for fitting flow data that is significantly regulated by upstream reservoirs. In general, a portion of the flow frequency data for a highly regulated stream will be very flat in the zone in which upstream regulation can control the flow. This type of data lends itself to a graphical fit.

When the **Graphical** tab is selected on the Volume-Duration Frequency editor, the window will appear as shown in Figure 7-11. As indicated, two additional tabs will appear on the screen, **Curve Input** and **Plot**. HEC-SSP User's Manual

Chapter 7 - Performing a Volume Duration Frequency Analysis

General Options Duratio	n Table Analytical Gra	phical						
User-Defined Graphical Curve Log Transformation: On								
Volume	-Duration Frequency Cun	ves for CHATTAHOOCHEE	RIVER-CORNELIA, GA-F	LOW, Average Daily FLOW	/ in CFS			
Percent Chance Exceedance	1	7	30	60	90			
0.2								
0.5								
1.0								
2.0								
5.0								
10.0								
20.0								
50.0								
80.0								
90.0								
95.0								
99.0								
Plot Plot Analytical Graphical Curve View Report SPint OK Cancel Apply								

Figure 7-11. Graphical Curve Table for a Volume-Duration Frequency Analysis.

Curve Input

The user manually enters the frequency ordinates for all durations in the table on the **Curve Input** tab. As previously mentioned, the number of frequency ordinates and durations are set on the Options tab. The idea is to enter values in the table that will create a best fit line of the data, based on the user's judgment. Data entered in the graphical curve table will be plotted as a line in the graph on the **Plot** tab after the **Compute** button is pressed.

Plot

The graphical analysis **Plot** tab is available for viewing results, as shown in Figure 7-12. The results graph includes the historic annual maximum/minimum flows, plotted using the specified plotting position method, and the user-defined graphical curve, which was entered in the table on the **Curve Input** tab.

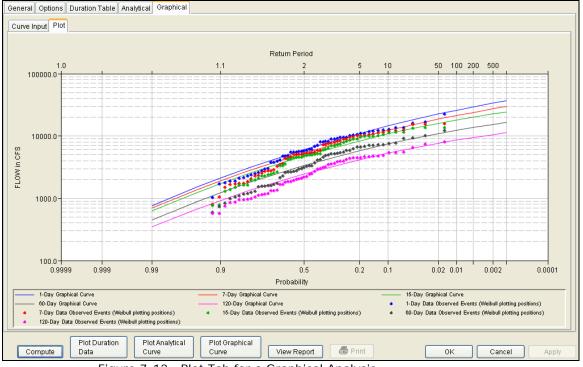


Figure 7-12. Plot Tab for a Graphical Analysis.

Viewing and Printing Results – Volume-Duration Frequency Analysis

The user can view output for the frequency analysis directly from the Volume-Duration Frequency editor (Tabular and Graphical output) or by using the plot and view report buttons at the bottom of the editor. The output consists of tabular results, an analytical frequency curve plot, a graphical frequency curve plot, and a report documenting the data and computations performed.

Tabular Output

Once the computations for the analytical frequency analysis are completed, the user can view tabular output by opening the **Tabular Results** tab under the **Analytical** analysis tab. The details of this table were discussed above. The tabular results can be printed by using the **Print** button at the bottom of the Volume-Duration Frequency editor. When the print button is pressed, a window will appear, giving the user options for how the table is to be printed.

Graphical Output

Graphical output can be opened by selecting one of the plot buttons at the bottom of the Volume-Duration Frequency editor or by selecting the **Plot** tab under the Analytical or Graphical tabs. There are three plot buttons at the bottom of the Volume-Duration Frequency editor, Plot Duration Data, Plot Analytical Curve, and Plot Graphical Curve. Pressing the Plot Duration Data button will open a new window containing a graph showing the systematic data plotted using the userdefined plotting position method. Pressing the Plot Analytical Curve button will open a new window containing a graph with both the systematic data and the computed analytical frequency curves, as shown in Figure 7-13. Pressing the Plot Graphical Curve button will open a new window containing a graph with both the systematic data and the user-defined frequency curves.

Figure 7-13. Plot of Systematic Data and Analytical Frequency Curves.

All plots opened by selecting one of the plot buttons at the bottom of the Volume-Duration Frequency editor contain menu options for printing, editing, and saving the plots.

Plots can be sent to the printer by selecting the **Print** option located on the **File** menu. Additional printing options available from the File menu are Page Setup, Print Preview, and Print Multiple (used for printing multiple graphs on the same page). The plot can also be sent to the Windows Clipboard by selecting **Copy to Clipboard** from the File menu. Additionally, the plot can be saved to a file by selecting the **Save As** option from the File menu. When the Save As option is selected, a window will appear allowing the user to select a directory, enter a filename, and select the format for saving the file. Currently four file formats are available for saving the plot to disk: windows metafile, postscript, JPEG, and portable network graphic. The data contained within the plot can also be tabulated by selecting **Tabulate** from the File menu. When this option is selected, a separate window will appear with the data tabulated. Additional options are available from the File menu for saving the plot properties as a template (**Save Template**) and applying previously saved templates to the current plot (**Apply Template**).

The **Edit** menu contains several options for customizing the plot properties. These options include Plot Properties, Configure Plot Layout, Default Line Styles, and Default Plot Properties. Also, the user can right-click on a line or data point in the plot area or in the legend and a shortcut menu will open with customization options. The graphic customizing capabilities within HEC-SSP are very powerful, but are also somewhat complex to use. The code used in developing the plots in HEC-SSP is the same code that is used for developing plots in HEC-DSSVue and several other HEC software programs. Please refer to the HEC-DSSVue User's Manual for details on customizing plots.

Viewing the Report File

Computational results for a volume-duration frequency analysis are written to a report file. The report file lists all of the input data and user settings, plotting positions of the data points, intermediate results, each of the various statistical tests performed (i.e. high and low outliers, historical data, etc...), and the final results. This file is often useful for understanding how the software arrived at the final frequency curves. Press the **View Report** button at the bottom of the Volume-Duration Frequency editor to open the report, as shown in Figure 7-14.

South_Fork_Wailua_River.rpt		×
Eile Edit Search Format		
File: C:\HEC-SSP Build 2008-02-13\projects\volume-duration_testing\VolumeFrequencyAnaly	sisResults\South_Fork_Wailua_River\South_Fork_Wailua	1_I
Volume-Duration Analysis 18 Jun 2008 02:47 PM		
Input Data		
Analysis Name: South Fork Wailua River Description:		
Data Set Name: SF WAILUA RIVER-LIHUE, KAUAI, HI-FLOW DSS File Name: C:\HEC-SSP Build 2008-02-13\projects\volume-duration_test DSS Pathname: /SF WAILUA RIVER/LIHUE, KAUAI, HI/FLOW//1DAY/USGS/	ing\volume-duration_testing.dss	
Project Path: C:\HEC-SSP Build 2008-02-13\projects\volume-duration_testi Report File Name: C:\HEC-SSP Build 2008-02-13\projects\volume-duration_t Result File Name: C:\HEC-SSP Build 2008-02-13\projects\volume-duration_t	esting\VolumeFrequencyAnalysisResults\South	
Analyze Maximums		
Analysis Year: Calendar Year		
Record Start Date: 01 Jan 1912 Record End Date: 17 Jun 2008		
User-Specified Durations Duration: 1 day Duration: 3 days Duration: 7 days Duration: 15 days Duration: 30 days Duration: 60 days		
Plotting Position Type: Weibull		
Probability Distribution Type: Pearson Type III Use Log Transform		
Upper Confidence Level: 0.05 Lower Confidence Level: 0.95		
Use Default Frequencies		
Skew Option: Use Station Skew Regional Skew: Regional Skew MSE:		
Display ordinate values using 0 digits in fraction part of value		
End of Input Data		
Statistical Analysis of 1-day Maximum values		
<pre></pre>		
Based on 97 events, 10 percent outlier test value $K(N) = 3.006$		
O low outlier(s) identified below test value of 348.13		
<< High Outlier Test >>	>	
	1:1.1:1 1:1	듹

Figure 7-14. Volume-Duration Frequency Report.

Plots, tables and reports can also be created by selecting menu options from the **Results** menu. At least one volume-duration frequency analysis must be selected in the tree before selecting one of the menu options on the Results menu. Results from multiple analyses are combined in one graph if they are selected in the study tree when the **Graph** menu option is selected. The **Results Summary Report** menu option will create a summary table of statistics and frequency curve ordinates for the selected analyses as shown in Figure 7-15.

WolumeFrequencySummary.rpt													
Data Name	Duration	Mean	Std Dev	Stn	Rgml	Wght	Adpt				Evnt P	erd	
Rio Grande at Alubquerque UNREGULATED Rio Grande at Alubquerque UNREGULATED Rio Grande at Alubquerque UNREGULATED Rio Grande at Alubquerque UNREGULATED	1-Day 7-Day 15-Day 60-Day	3.731 3.670 3.621 3.470 3.334	0.319	-0.448			-0.448 -0.539 -0.532 -0.339 -0.231	0 0 0 0	0 0	0	61 61 61 61 61		
Data Name	Duration				80	50	1	Percer 20			edance- 5	2	
Rio Grande at Alubquerque UNREGULATED Rio Grande at Alubquerque UNREGULATED Rio Grande at Alubquerque UNREGULATED	1-Day 7-Day 15-Day 60-Day	773.0 575.1 500.1 392.4	1478. 1178. 1035. 756.	4 2043.2 5 1677.7 5 1400.3 5 1053.6	2963.8 2506.2 2225.9 1548.7	5681.8 5007.2 4405.4 3085.8	1009 908 019 578	3.1 5.4 3.2	11956. 10021. 7845.	0 147 9 133 9 99	34.6 65.5 72.9	18292.7 16628.0 12899.3	23416.6 20905.0 19028.5 15203.0 10116.5
urve Ordinates Data Maar	Duration	Bean	Std		99							ccent Char	
	Data Base Piso Ganda at Alubuputgut UNEFOULATED Filo Grande at Alubuputgut UNEFOULATED Filo Grande at Alubuputgut UNEFOULATED Filo Grande at Alubuputgut UNEFOULATED Data Name Filo Grande at Alubuputgut UNEFOULATED Filo Grande at Alubuputgut UNEFOULATED	Data Dutation Name Dutation No Gauda at Aubguarge UNECULATE Sey No Gauda at Aubguarge UNECULATE Sey No Gauda at Aubguarge UNECULATE 15-Sey No Gauda at Aubguarge UNECULATE 10-Day Pio Gauda at Aubguarge UNECULATE 10-Day Data Dutation Name Dutation Pio Gauda at Aubguarge UNECULATE 1-Day Pio Gauda at Aubguarge UNECULATE 15-Day Pi	Data Duration Mean Name Duration Mean Name Duration Analysis of the second sec	Data Duration Mem Std Piase Difference Difference	Data Duration Mem Std	Data Duration Henn Std	Data Duration Mean Std	Data Duration Mem Std	Data Hase Duration Mean Pev Std Std Strew	Data Duration Mean Std	Data Duration Men Std SkewSkew Skew	Data Duration Mean Std	Data Name Duration Mean Dev Std Dev

Figure 7-15. Summary Table for a Volume-Duration Frequency Analysis.

APPENDIX A

References

Interagency Advisory Committee on Water Data, March 1982. Bulletin 17B, "Guidelines for Determining Flood Flow Frequency", Published by the U.S. Department of the Interior, Geologic Survey.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, May 1992. HEC-FFA, Flood Frequency Analysis, User's Manual.

U.S. Army Corps of Engineers, Hydrologic Frequency Analysis, EM 1110-2-1415. March 1993, Washington, D.C.

APPENDIX B

Example Data Sets

The input and output for eleven example data sets are provided to illustrate the use of selected options and to assist in verifying the correct execution of the program.

The first six example data sets are the same examples that were found in the HEC-FFA program documentation. The first six examples were duplicated with a Bulletin 17B and General Frequency analysis. This manual only shows these examples using the Bulletin 17B analysis; however, the example data sets show that results are the same whether a Bulletin 17B or General Frequency analysis was performed. As shown in the example data sets, the HEC-SSP software produces the same results as HEC-FFA for these six data sets. All of these test examples are provided with the software as a single HEC-SSP study labeled "SSP Examples". You can install this study on your computer by selecting the **Help→Install Example Data** menu option. After opening this study for the first time on your computer, you must compute each example before viewing tabular and graphical results.

A brief description of each test example is provided. In most cases the weighted skew option was selected, and a regional skew value was entered from the generalized skew map of the United States provided within Bulletin 17B (Plate 1).

The example problems shown in this section are entitled:

- 1. Fitting the Log-Pearson Type III Distribution.
- 2. Analysis with High Outliers.
- 3. Testing and Adjusting for a Low Outlier.
- 4. Zero Flood Years.
- 5. Confidence Limits and Low Threshold Discharge.
- 6. Use of Historic Data and Median Plotting Positions.
- 7. Analyzing Stage Data.
- 8. Using User-Adjusted Statistics.
- 9. General Frequency Graphical Analysis.

- 10. Volume-Duration Frequency Analysis, Maximum Flows.
- 11. Volume-Duration Frequency Analysis, Minimum Flows.

When the "SSP Examples" study file is open, the screen will appear as shown in Figure B-1.

HEC-SSP - SSP EXAMPLES		
ile Edit View Maps Data Analysis Results Tools Window Help		
Conception C	PBulletin 178 Editor - FFA Test 1 Name: FA Test 1 Destination: VinD Appendix 12, Shample 1 - Filling the Log Peerson Type III Distitution New Eak Bet: FillingLinet Creeke CoN-FLOW DSS File Name: Circlectured sand SettingslightermitMM Documental/SDP ProjectinSDP_Examples/SDP_EXAMPLES ass Report File: Circlectured sand SettingslightermitMM Documental/SDP ProjectinSDP_Examples/SDP_EXAMPLES ass Post Vergitted Stater Obscillator Results Over Vergitted Stater Projectured Stater Over Vergitted Stater 0.000 Vise Station Stater 0.000 Over Regional Stater 0.000 Over Regional Stater 0.000 Over Regional Stater 0.000 Over Glassift A ID Dift Documents of State Vision Over Regional Stater 0.000 Over Regional Stater 0.000 Over Regional Stater 0.000 Dist Regional Expected Prob. Curve 0.000 Dist Normalia 0.0000 Big Range Is Spottad Prob. Curve 0.0000 Dist Normalia 0.0000 Dist Normalia 0.0000 Over Instere Spottad Prob. Curve 0.0000 <	0.000
	Base Map added to Base Map Loading Bulletin 178 FFA Test 1 Study SSP EXAMPLES saved.	
Study Maps Files	Messages	
oordinates: 883 east, 956 north		

Figure B-1. SSP Examples Study.

As shown in Figure B-1, there are six Bulletin 17B analyses, nie General Frequency analyses, and two Volume-Frequency analyses in this study. The following sections document each of the example data sets.

Example 1: Fitting the Log-Pearson Type III Distribution

The input data for the HEC-SSP Example 1 is the same as that for Example 1 in Appendix 12, Guidelines for Determining Flood Flow Frequency, Water Resources Council Bulletin 17B. Example 1 illustrates the routine computation of a frequency curve by the Bulletin 17B methodology.

The data for this example is from Fishkill Creek in Beacon, New York. The period of record used for this example is from 1945 to 1968. To view the data from HEC-SSP, right-click on the data record labeled **"FISHKILL CREEK – BEACON- FLOW**" in the study tree and then select **Tabulate**. The data will appear as shown in Figure B-2.

👙 /FISHKILL CRE	EK/BEACON/FLOW	/01 🔳 🗖 🔀
<u>File E</u> dit <u>V</u> iew		
		DEVOON
		BEACON
Ordinate	Date / Time	FLOW
Units		cfs
Туре		INST-VAL
1	05 Mar 45 12:00	2,290.0
2	27 Dec 45 12:00	1,470.0
3	14 Mar 47 24:00	2,220.0
4	18 Mar 48 24:00	2,970.0
5	01 Jan 49 24:00	3,020.0
6	09 Mar 50 12:00	1,210.0
7	01 Apr 51 12:00	2,490.0
8	12 Mar 52 12:00	3,170.0
9	25 Jan 53 12:00	3,220.0
10	13 Sep 54 12:00	1,760.0
11	20 Aug 55 12:00	8,800.0
12	16 Oct 55 12:00	8,280.0
13	10 Apr 57 12:00	1,310.0
14	21 Dec 57 12:00	2,500.0
15	11 Feb 59 12:00	1,960.0
16	06 Apr 60 12:00	2,140.0
17	26 Feb 61 12:00	4,340.0
18	13 Mar 62 12:00	3,060.0
19	28 Mar 63 12:00	1,780.0
20	26 Jan 64 12:00	1,380.0
21	09 Feb 65 12:00	980.0
22	15 Feb 66 12:00	1,040.0
23	30 Mar 67 12:00	1,580.0
24	19 Mar 68 12:00	3,630.0

Figure B-2. Tabulation of the Peak Flow Data for Fishkill Creek.

To plot the data for this example, right-click on the data record again and then select **Plot**. A plot of the data will appear as shown in Figure B-3.

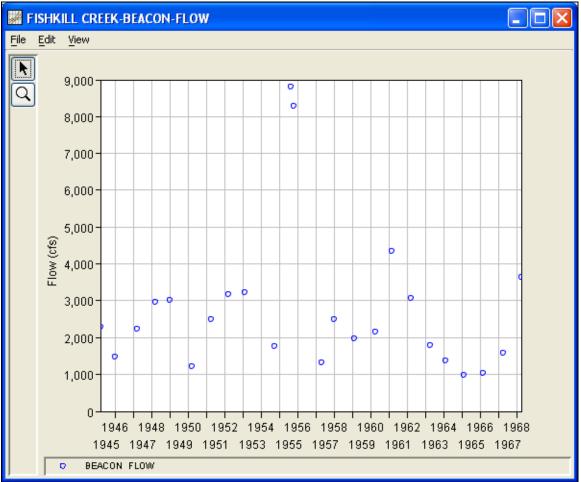


Figure B-3. Plot of the Fishkill Creek Data.

A Bulletin 17B and a General Frequency analysis have been developed for this example. To open the Bulletin 17B analysis editor for test example 1, either double-click on the analysis labeled **FFA Test 1** from the Study Explorer, or from the **Analysis** menu select open, then select **FFA Test 1** from the list of available analyses. When FFA Test 1 is selected, the Bulletin 17B analysis editor will appear as shown in Figure B-4. HEC-SSP User's Manual

🕌 Bulletin 1	17B Editor -FFA Test 1										
Name:	FFA Test 1										
Description:	WRC Appendix 12, Example 1 - Fitting t	RC Appendix 12, Example 1 - Fitting the Log-Pearson Type III Distribution									
Flow Data Set:	FISHKILL CREEK-BEACON-FLOW		×								
DSS File Name:	C:\Documents and Settings\q0hecmjf\	/ly Documents\SSP Projects\SSP_Example	s\SSP_EXAMPLES.dss								
Report File:	C:\Documents and Settings\q0hecmjf\	/ly Documents\SSP Projects\SSP_Example	s\Bulletin17bResults\FFA_Test_1\FFA_Test_1.rpt								
General Option:	s Tabular Results										
Generalized Sk	ew	Plotting Position	Confidence Limits								
🔘 Use Statio	on Skew	⊙ Weibull (A and B = 0)	⊙ Defaults (0.05, 0.95)								
💿 Use Weid	ihted Skew	O Median (A and B = 0.3)	O User Entered Values								
O Use Regi	·	O Hazen (A and B = 0.5)	Upper Limit: 0.000								
-	al Skew: 0.6	Other (Specify A, B)	Lower Limit: 0.000								
	ew MSE: 0.302	Plotting position computed									
	0.302	using formula (m-A)/(n+1-A-B)	Time Window Modification								
Expected Proba	ablity Curve	Where: m=rank, 1=largest	DSS Range is 3/5/1945 - 3/19/1968								
📀 Compute E	Expected Prob. Curve	N=Number of Years	start date								
🔿 Do Not Cor	mpute Expected Prob. Curve	A,B=Constants	🗌 end date								
	· ·										
		B; 0.000									
Comp	ute Plot Curve View Repo	rt Print	OK Cancel Apply								

Figure B-4. Bulletin 17B Analysis Editor with Test Example 1 Data Set.

Shown in Figure B-4 are the general settings that were used to perform this frequency analysis. As shown, the **Skew** option was set to use the **Weighted Skew**. To use the weighted skew option, the user must enter a value for the Regional Skew and the Regional Skew Mean Square Error (MSE). This selection requires the user to either look up a value from the generalized skew map of the United States, which is provided with Bulletin 17B, or develop a value from a regional analysis of nearby gages. In this example a value of 0.6 was taken from the generalized skew MSE of 0.302 whenever regional skew values are taken from the map.

Also for this example, the **Expected Probability Curve** option was selected to be computed in addition to the Log Pearson III computed curve. The **Weibull** plotting position method was selected, as well as the default **Confidence Limits** of 0.05 (5 percent chance exceedance) and 0.95 (95% chance exceedance). Shown in Figure B-5 is the Bulletin 17B editor with the **Options Tab** selected.

🕌 Bulletin 1	17B Editor -FFA 1	Fest 1								
Name:	FFA Test 1									
Description:	WRC Appendix 12, Examp	le 1 - Fitting the Log-Pe	arson Type III Distribution							
Flow Data Set:	FISHKILL CREEK-BEACO	N-FLOW				~				
DSS File Name:	C:\Documents and Setting	is\q0hecmjf\My Docume	ents\SSP Projects\SSP_E	(amples\SS	SP_EXAMPLES.dss					
Report File:	C:\Documents and Setting	is\q0hecmjf\My Docume	ents\SSP Projects\SSP_E	(amples\Bu	ulletin17bResults\FFA_Test_1\FFA_1	"est_1.rpt 🛄				
General Option:	General Options Tabular Results									
Low Outlier Thr	reshold	Historic Period Data			User Specified Frequency Ordina	tes				
Use Low Ot	utlier Threshold	📃 Use Historic Dat	а		🔲 Use Values from Table belov	/				
Value	0.000	Historic Period			Frequency in Percent					
		Start Year:				0.2				
		End Year:				1.0				
		High Threshold:	(0.000		2.0				
			storic Events			10.0				
		Water Year	Peak	-		50.0 80.0				
				<u> </u>		90.0				
						95.0 99.0				
Comp	ute Plot Curve	View Report P	rint		OK Cancel	Apply				

Figure B-5. Bulletin 17B Editor with Options Tab Selected for Test Example 1.

As shown in Figure B-5, none of the available options for modifying the frequency analysis were selected for this example. These options include changing the **Low Outlier Threshold** and using **Historic Data**. Additionally, the option to override the default **Frequency Ordinates** was not selected.

Once all of the General and Optional settings are set or selected, the user can press the **Compute** button to perform the analysis. Once the computations have been completed, a message window will open stating **Compute Complete.** Close this window and then select the **Tabular Results** tab. The analysis window should look like Figure B-6.

HEC-SSP User's Manual

Name:	FFA Test 1					
Description:	WRC Appendix 12, Example 1 - Fitting the Log-Pearson Type III Distribution					
Flow Data Set:		K-BEACON-FLOW		·		
OSS File Name:		nd Settings\g0hecmjf\My Docu	imante)@@B	Projecto)CCP Examples	ICOD EVAMPLES doo	
Report File:	C:\Documents a	nd Settings\q0hecmjf\My Docu	uments\SSP	Projects\SSP_Examples	Bulletin17bResults\FFA_Te	st_1\FFA_Test_1.rpt (
General Option	s Tabular Result	s				
		Frequency Curv	e for: FISHK	ILL CREEK-BEACON-FLO	W	
Percent C	hance	Computed Curve	Exp	ected Prob.	Confidence Li	mits
Exceed	ance	Flow in cfs	F	low in cfs	Flow in cfs	\$
					0.05	0.95
	0.2	18,828		27,494	38,021	12,10
	0.5	14,215		18,603	26,365	9,60
	1.0	11,388		13,910	19,773	7,99
	2.0	9,031		10,419	14,656	6,58
	5.0	6,506		7,058	9,635	4,99
	<u> </u>	4,959 3,657		5,206 3,743	6,847	3,94
	50.0	2,194		2,194	2,660	2,99
	80.0	1,438		1,418	1,760	1,10
	90.0	1,192		1,163	1,485	88
	95.0	1,038		1,000	1,313	74
	99.0	830		778	1,083	55
	Quete	04-16-16	1		Number of Events	
	· · · · · ·	n Statistics nsform: Flow,		Event	Number	
St	tatistic	Value		Historic Events		
Mean .			3.368	High Outliers		
Standard Dev 0.246		Low Outliers				
Station Skew 0.730		Zero Or Missing		2-		
Regional Skew 0.600			Systematic Events Historic Period		2	
Veighted Skew U.668						
Adopted Skew			0.668			

Figure B-6. Bulletin 17B Analysis Window with Results Tab Shown for Test Example 1.

As shown in Figure B-6, the Frequency Curve table contains the following results:

Percent Chance Exceedance

Computed Curve (Log-Pearson III results)

Expected Probability Curve

Confidence Limits (5% and 95% chance exceedance curves)

On the bottom, left side of the results tab is a table of System Statistics for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom, right side of the results tab is a Number of Events table showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (if historic data was entered).

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-7.

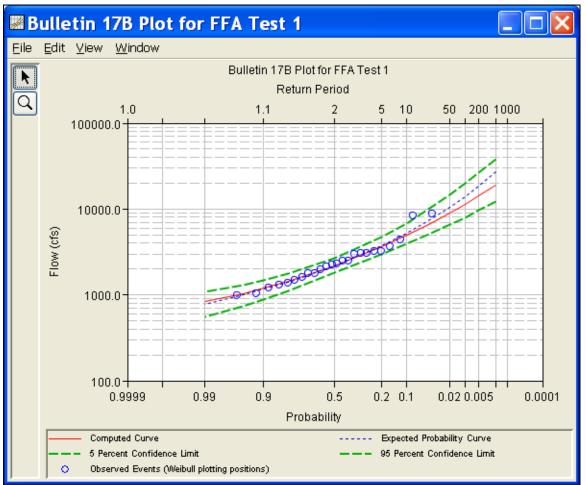


Figure B-7. Plotted Frequency Curves for Test Example 1.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-8 is the report file for test example 1.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis. The user should review the report file to understand how HEC-SSP performed the Bulletin 17B frequency curve calculations.

<pre>We CuDocuments and SettingslqDhecmjfMMy DocumentsUSSP ProjectsUSSP_ExamplesUBuiledIn17bResultsFFA_Test_1FFA_Test_1 rol Builetin 17B Frequency Analysis 24 Jun 2006 07:51 AT Input Data Analysis Nume: FFA Test 1 Description: WDC Appendix 12, Example 1 - Fitting the Log-Pearson Type III Distribution Fishkill Creek at Beacon, NY Data Set Name: FISHKILL CREEK-BEACOM-FLOW DSS File Name: C:Ubocuments and SettingslqDhecmjfVMy DocumentsVSSP ProjectsVSSP_ExamplesVSSP_EXAMPLES.dss DSS Fathname: /FISHKILL CREEK-BEACOM/FLOW DSS File Name: C:Ubocuments and SettingslqDhecmjfVMy DocumentsVSSP ProjectsVSSP_ExamplesVSULetin17bResul Start Date: End Date: Start Date: End Date: Start Date: Display ordinate values using 0 digits in fraction part of value End of Input Data <</pre> <pre> Weihuld Upper Confidence Level: 0.05 Lover Confidence Level: 0 in fraction part of value End of Input Data </pre> Weihul Clear Confidence Level: 0.05 Lover Confidence Level: 0 identified above test value K(N) = 2.467 0 high outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 love outlier(s) identified above test value of 578.66	In FFA_Test_1.rpt
<pre>Builetin 175 Frequency Analysis 24 Jun 2006 07:51 AIX 24 Jun 2006 07:51 AIX</pre>	Eile Edit Search Format
<pre>24 Jun 2006 07:51 AM Input Data Analysis Name: FFA Test 1 Description: NKC Appendix 12, Example 1 - Fitting the Log-Pearson Type III Distribution Fishkill Creek at Descon, NY Data Set Name: FISHKILL CREEK-DEACON-FLOW DSS File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResult Mill File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResult Start Date: End Date: Skew Option: Use Weighted Skew Regional Skew 10.6 Regional Skew 10.6 Regional Skew 10.6 Regional Skew 10.5 Display ordinate values using 0 digits in fraction part of value End of Input Data End of Input Data End of Input Data Saed on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 </pre>	File: C:\Documents and Settings\q0hecmjfMy Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_1\FFA_Test_1.rpt
Analysis Name: FFA Test 1 Description: WFC Appendix 12, Example 1 - Fitting the Log-Pearson Type III Distribution Fishkill Creek at Beacon, WY Data Set Name: FISHKILL CREEK-BEACON-FLOW D35 Pille Name: C:\Documents and Settings\g0hecmjf\Wy Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss D35 Pathname: (FISHKILL CREEK-BEACON/FLOW) D35 Pille Name: C:\Documents and Settings\g0hecmjf\Wy Documents\SSP Projects\SSP_Examples\Bulletin17bResult XML File Name: C:\Documents and Settings\g0hecmjf\Wy Documents\SSP Projects\SSP_Examples\Bulletin17bResult Start Date: End Date: Steev Option: Use Weighted Skew Regional Skew: 0.6 Regional Skew: 0.6 Regional Skew: 0.02 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 0 digits in fraction part of value End of Input Data <	
<pre>Description: WE Appendix 12, Example 1 - Fitting the Log-Pearson Type III Distribution Fishkill Creek at Beacon, NY Data Set Name: CTIMENTLE CFEEK-DEACON-FLOW DSS File Name: CTIMENTLE CFEEK-DEACON/FLOW/Uljan1900/IF-CENTURY// DSS Pathname: /FISHKILL CFEEK/DEACON/FLOW/Uljan1900/IF-CENTURY// Examples\SSP_Examples\SSP_Examples\SUlletin17bResul Start Date: NUL File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResul Start Date: Start Date: Skew Option: Use Weighted Skew Regional Skew NSE: 0.302 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Display ordinate values using 0 digits in fraction part of value End of Input Data </pre> A High Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 Final Results	Input Data
DSS File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: /FISHKILL CREEK/BEACOM/FLOW/Oljan1900/IR-CENTURY// Report File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bRe: ML File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bRe: Start Date: End Date: Skew Option: Use Weighted Skew Regional Skew: 0.6 Regional Skew NSE: 0.302 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 0 digits in fraction part of value End of Input Data <	Analysis Name: FFA Test 1 Description: WRC Appendix 12, Example 1 - Fitting the Log-Pearson Type III Distribution Fishkill Creek at Beacon, NY
<pre>XML File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletinl7bResul Start Date: End Date: Skew Option: Use Weighted Skew Regional Skew MSE: 0.302 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 0 digits in fraction part of value End of Input Data Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 low outlier(s) identified below test value of 578.66</pre>	Data Set Name: FISHKILL CREEK-BEACON-FLOW DSS File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: /FISHKILL CREEK/BEACON/FLOW/Oljan1900/IR-CENTURY//
End Date: Skew Option: Use Weighted Skew Regional Skew MSE: 0.302 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 0 digits in fraction part of value End of Input Data Weight Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 Weight Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 low outlier(s) identified below test value of 578.66	Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bRe: XML File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResul
Regional Skew NSE: 0.302 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 0 digits in fraction part of value End of Input Data << High Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 	Start Date: End Date:
<pre>Upper Confidence Level: 0.05 Lower Confidence Level: 0.95</pre> Display ordinate values using 0 digits in fraction part of value End of Input Data < End of Input Data End of Upper Confidence Level: 0.95 Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 End Confidence Level: 0.95 Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 low outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 low outlier(s) identified below test value of 578.66 Final Results	Skew Option: Use Weighted Skew Regional Skew: 0.6 Regional Skew MSE: 0.302
<pre>Lower Confidence Level: 0.95 Display ordinate values using 0 digits in fraction part of value End of Input Data </pre> <pre> End of Input Data </pre> <pre> Based on 24 events, 10 percent outlier test value K(N) = 2.467 O high outlier(s) identified above test value of 9,424.96</pre>	Plotting Position Type: Weibull
<pre> End of Input Data <<< High Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 </pre>	
<pre><< High Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 </pre> Final Results	Display ordinate values using 0 digits in fraction part of value
<pre><< High Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 </pre> Final Results	End of Input Data
<pre>Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 high outlier(s) identified above test value of 9,424.96 </pre> Final Results	
<pre>0 high outlier(s) identified above test value of 9,424.96 </pre> Content outlier test value K(N) = 2.467 0 low outlier(s) identified below test value of 578.66 Final Results	
<pre><< Low Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 low outlier(s) identified below test value of 578.66 Final Results</pre>	
<< Low Outlier Test >> Based on 24 events, 10 percent outlier test value K(N) = 2.467 O low outlier(s) identified below test value of 578.66 Final Results	o high oddiler(s) identified above dest value of 9,424.90
Based on 24 events, 10 percent outlier test value K(N) = 2.467 0 low outlier(s) identified below test value of 578.66 Final Results	<< Low Outlier Test >>
Final Results	
	0 low outlier(s) identified below test value of 578.66
	Final Decults
	<
1:1.1:1 1:1	

Figure B-8. Test Example 1 Report File.

Example 2: Analysis with High Outliers

The input data for the Example 2 is the same as that for Example 2 in Appendix 12, Guidelines for Determining Flood Flow Frequency, Water Resources Council Bulletin 17B. Example 2 illustrates the application to data with a high outlier.

The data for this example is from Floyd River in James, Iowa. The period of record used is from 1935 to 1973. To view the data from HEC-SSP, right-click on the data record labeled "**FLOYD RIVER-JAMES IA-FLOW**" in the study explorer and then select **Tabulate**. The data will appear as shown in Figure B-9.

👙 /FLOYD RIVER	JAMES IA/FLOW	/01JA 🔳 🗖	×
<u>File E</u> dit <u>V</u> iew			
		JAMES IA	
Ordinate	Date / Time	FLOW	
10	13 May 44 12:00	7,440	
11	12 Mar 45 12:00	5,320	
12	01 Mar 46 12:00	1,400	
13	25 Jun 47 12:00	3,240	
14	17 Mar 48 12:00	2,710	
15	05 Mar 49 12:00	4,520	
16	19 Jun 50 12:00	4,840	
17	28 Mar 51 12:00	8,320	
18	31 Mar 52 12:00	13,900	
19	08 Jun 53 12:00	71,500	
20	22 Jun 54 12:00	6,250	
21	10 Jul 55 12:00	2,260	
22	13 Jul 56 12:00	318	
23	05 Jul 57 12:00	1,330	
24	01 Jul 58 12:00	970	
25	01 Jun 59 12:00	1,920	
26	29 Mar 60 12:00	15,100	
27	02 Mar 61 12:00	2,870	
28	29 Mar 62 12:00	20,600	
29	02 Jun 63 12:00	3,810	
30	09 Sep 64 12:00	726	
31	02 Apr 65 12:00	7,500	
32	10 Feb 66 12:00	7,170	
33	19 Jun 67 12:00	2,000	
34	21 Jul 68 12:00	829	
35	05 Apr 69 12:00	17,300	
36	04 Mar 70 12:00	4,740	
37	01 Jan 71 12:00	13,400	
38	01 Jan 72 12:00	2,940	
38	01 Jan 73 12:00	2,940	
	01Jan73 12.00		

Figure B-9. Tabulation of the Peak Flow Data for the Floyd River.

To plot the data for this example, right-click on the data record and then select **Plot**. A plot of the data will appear as shown in Figure B-10.

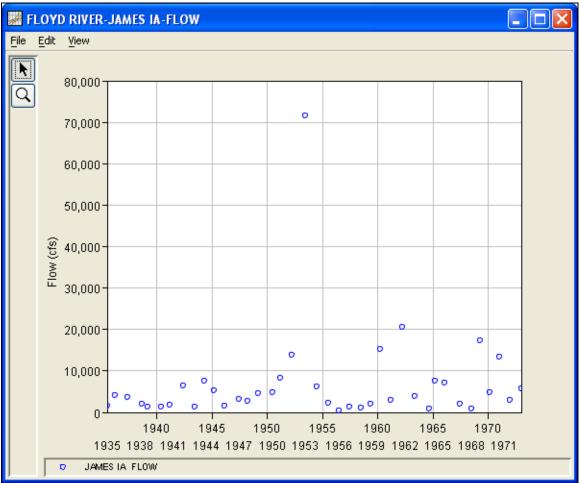


Figure B-10. Plot of Floyd River Data

A Bulletin 17B and General Frequency analysis have been developed for this example. To open the Bulletin 17B analysis editor for test example 2, either double-click on the analysis labeled **FFA Test 2** from the study pane, or from the **Analysis** menu select open and then select **FFA Test 2** from the list of available analyses. When FFA Test 2 is selected, the Bulletin 17B analysis editor will appear as shown in Figure B-11. HEC-SSP User's Manual

🕌 Bulletin 1	17B Editor -FFA Test 2										
Name:	FFA Test 2										
Description:	WRC Appendix 12, Example 2 - Adjusting	(RC Appendix 12, Example 2 - Adjusting for a high outlier									
Flow Data Set:	FLOYD RIVER-JAMES IA-FLOW		×								
DSS File Name:	C:\Documents and Settings\q0hecmjf\My	Documents\SSP Projects\SSP_Example	es\SSP_EXAMPLES.dss								
Report File:	C:\Documents and Settings\q0hecmjf\My	Documents\SSP Projects\SSP_Example	s\Bulletin17bResults\FFA_Test_2\FFA_Test_2.rpt								
General Option	s Tabular Results										
Generalized Sk	æw	Plotting Position	Confidence Limits								
🔿 Use Statio	on Skew	⊙ Weibull (A and B = 0)	 Defaults (0.05, 0.95) 								
💿 Use Weig	phted Skew	O Median (A and B = 0.3)	O User Entered Values								
🔿 Use Regi	ional Skew	O Hazen (A and B = 0.5)	Upper Limit: 0.000								
Regiona	al Skew:	Other (Specify A, B)	Lower Limit: 0.000								
Reg. Sk	ew MSE: 0.302	Plotting position computed using formula	Time Window Modification								
Expected Proba	abilitu Quana	(m-A)/(n+1-A-B) Where:									
		m=rank, 1=largest N=Number of Years	DSS Range is 6/28/1935 - 1/1/1973								
💿 Compute E	Expected Prob. Curve	A,B=Constants	start date								
🔘 Do Not Cor	mpute Expected Prob. Curve	A: 0.000	end date								
		B: 0.000									
Comp	Compute Plot Curve View Report Print OK Cancel Apply										

Figure B-11. Bulletin 17B Analysis Editor with Test Example 2 Data Set.

Shown in Figure B-11 are the general settings that were used to perform this frequency analysis. As shown, the **Skew** option was set to use the **Weighted Skew**. To use the weighted skew option, the user must enter a value for the Regional Skew and the Regional Skew Mean Square Error (MSE). This selection requires the user to either look up a value from the generalized skew map of the United States, which is provided with Bulletin 17B, or develop a value from a regional analysis of nearby gages. In this example a value of -0.3 was taken from the generalized skew MSE of 0.302 whenever regional skew values are taken from the map.

Also for this example, the **Expected Probability Curve** option was selected to be computed in addition to the Log Pearson III computed curve. The **Weibull** plotting position method was selected, as well as the default **Confidence Limits** of 0.05 (5 percent chance exceedance) and 0.95 (95% chance exceedance). Shown in Figure B-12 is the Bulletin 17B editor with the **Options Tab** selected.

& Bullotin	17B Editor	-FFA Test 2
🖻 Dutte till	I/D Eultor	-FFA Test Z

Name:	FFA Test 2						
Description:	WRC Appendix 12, Exam	/RC Appendix 12, Example 2 - Adjusting for a high outlier					
Flow Data Set:	FLOYD RIVER-JAMES IA	FLOW	~				
DSS File Name:	C:\Documents and Settin	gs\q0hecmjfMy Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss					
Report File:	C:\Documents and Settin	gs\q0hecmjfMy Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_2\FFA_Test_2.rpt					
General Options	5 Tabular Results						
CLow Outlier Thr	eshold	Historic Period Data					
Use Low Ou	utlier Threshold	✓ Use Historic Data					
Value	0.000	Historic Period Frequency in Percent					
		Start Year: 0.2					
		End Year: 1892					
	Line tool. 2.0 High Threshold: 70000						
			1				
		Historic Events 20.0					
		Water Year Peak 80.0	1				
	90.0						
Comp	ute Plot Curve	View Report Print OK Cancel Apply					

Figure B-12. Bulletin 17B Editor with Options Tab Selected for Test Example 2.

As shown in Figure B-12, the Historic Period Data option has been selected to reflect the fact that the 1953 flood peak of 71,500 cfs is known to be the largest flood since 1892. When the analysis was originally performed on this data set, the 1953 event was found to be a high outlier. (The reader may replicate this result by un-checking the "Use Historic Data" box, hitting the Compute button, and reviewing the Tabular Results tab.) High outliers should not be eliminated from an analysis, as they are valuable pieces of the flow record. However, when a high outlier is found in a data set, it suggests that the event might actually be the largest in a much longer period of record. The analyst should always try to locate and incorporate historic information to define a longer record and improve the quality of the frequency analysis. Since it was known that the 1953 event was the largest value since 1892, the year 1892 is entered as the Start Year for the historic period. Additionally, a **High Threshold Value** of 70,000 cfs was entered. By entering the High Threshold Value of 70,000 cfs, the 1953 flood of 71,500 cfs was removed from the systematic record and treated as a historic data value during the historic data adjustment calculations performed by HEC-SSP and outlined in Bulletin 17B, Appendix 6. Since no End Year was entered for the historic period, the last year of the systematic data set will be used as the End Year.

Other features on this tab include the **Low Outlier Threshold** and the option to override the default **Frequency Ordinates**, neither of which are selected in this example.

Once all of the General and Optional settings are set or selected, the user can press the **Compute** button to perform the analysis. Once the computations have been completed, a message window will open stating **Compute Complete.** Close this window and then select the **Tabular Results** tab. The analysis window should look like Figure B-13.

Name:							
Name.	FFA Test 2						
Description:	WRC Appendix 12, Example 2 - Adjusting for a high outlier 📃						
Flow Data Set:	FLOYD RIVER-J	FLOYD RIVER-JAMES IA-FLOW					
DSS File Name:	C:\Documents a	nd Settings\q0hecmjf\My Docu	ments\SSP	Projects\SSP_Examples\	SSP_EXAMPLES.dss		
Report File:	C:\Documents a	nd Settings\q0hecmjf\My Docu	ments\SSP	Projects\SSP_Examples\	Bulletin17bResults\FFA_Tes	st_2\FFA_Test_2.rpt	
General Option	s Tabular Resul	ts					
		Frequency Cur	ve for: FLON	D RIVER-JAMES IA-FLOW	1		
Percent C Exceed		Computed Curve Flow in cfs	Exp	ected Prob. Iow in cfs	Confidence Li Flow in cfs		
					0.05	0.95	
	0.2	68,690		87,684	146,181	40,25	
	0.5	49,600		59,583	98,492	30,41	
	1.0	37,981		43,796	71,334	24,14	
2.0		28,425	31,614		50,327	18,76	
5.0		18,470 12,638	19,725 13,167		30,068 19,215	12,84 9,14	
20.0		8,018		8,189	11,354	6,02	
	50.0 3,404			3,404	4,458	2,59	
	80.0 1,471			1,442	1,958	1,03	
	90.0	955		920	1,318	63	
	95.0	671		632	961	41	
	99.0	349		308	542	19	
	Syste	m Statistics			Number of Events		
	Log Tra	nsform: Flow,		Event		Number	
St	tatistic	Value		Historic Events			
Mean			3.537	High Outliers			
Standard Dev		0.438	Low Outliers				
Station Skew		0.165	Zero Or Missing Systematic Events		3		
Regional Skew			-0.300	Historic Period		3	
Weighted Skew			0.075			0	
Adopted Skew			0.075				

Figure B-13. Bulletin 17B Editor with Results Tab Selected for Test Example 2.

As shown in Figure B-13, the Frequency Curve table contains the following results:

Percent Chance Exceedance

Computed Curve (Log-Pearson III results)

Expected Probability Curve

Confidence Limits (5% and 95% chance exceedance curves)

On the bottom left-hand side of the results tab is the System Statistics table for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom right-hand side of the results tab is the Number of Events table showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (if historic data was entered).

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-14.

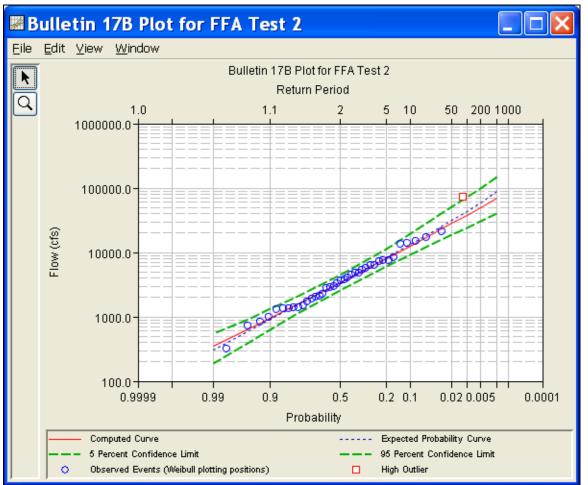


Figure B-14. Plotted Frequency Curves for Test Example 2.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print

the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-15 is the report file for Test Example 2.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis. The user should review the report file to understand how HEC-SSP performed the frequency curve calculations.

IFFA_Test_2.rpt
Eile Edit Search Format
File: C:\Documents and Settings\q0hecmjfMy Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_2\FFA_Test_2.rpt
Bulletin 17B Frequency Analysis 24 Jun 2008 08:05 AM
Input Data Analysis Name: FFA Test 2 Description: WRC Appendix 12, Example 2 - Adjusting for a high outlier Floyd River at James, IA
Data Set Name: FLOYD RIVER-JAMES IA-FLOW DSS File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: /FLOYD RIVER/JAMES IA/FLOW/Oljan1900/IR-CENTURY//
Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bRe: XML File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResul
Start Date: End Date:
Skew Option: Use Weighted Skew Regional Skew: -0.3 Regional Skew MSE: 0.302
Plotting Position Type: Weibull
Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Use High Outlier Threshold High Outlier Threshold: 70000.0
Use Historic Data Historic Period Start Year: 1892 Historic Period End Year:
Display ordinate values using 0 digits in fraction part of value
Preliminary Results << Plotting Positions >> FLOYD RIVER-JAMES IA-FLOW
Events Analyzed Ordered Events FLOW Water FLOW Weibull Day Mon Year CFS Rank Year CFS Plot Pos
28 Jun 1935 1,460 1 1953 71,500* 2.50 10 Mar 1936 4,050 2 1962 20,600 5.00
27 May 1937 3,570 3 1969 17,300 7.50
15 Sep 1938 2,060 4 1960 15,100 10.00 12 Mar 1939 1,300 5 1952 13,900 12.50
05 Jun 1940 1,390 6 1971 13,400 15.00
1:1.1:1 1:1

Figure B-15. Test Example 2 Report File.

Example 3: Testing and Adjusting for a Low Outlier

The input data for Test 3 are the same as that for Example 3 in Appendix 12 of the WRC Guidelines. Test 3 illustrates the application to data with a low outlier. Note that the program automatically screens for low outliers and, if low outliers are found, outputs the preliminary results in the report file in order to allow for comparison with the final results.

The data for this example is from Back Creek in Jones Springs, West Virginia. The period of record used for this example is from 1929 to 1973. To view the data, right-click on the data record labeled "**BACK CREEK-JONES SPRINGS**, **WV-FLOW**" in the study pane and then select **Tabulate**. The data will appear as shown in Figure B-16.

👙 /BACK CREEK/	JONES SPRINGS,	WV/F 🔳 🗖 🖡	×
File Edit View			
		JONES SPRIN	
Ordinate	Date / Time	FLOW	
Units		CFS	~
Туре		INST-VAL	-
1	17 Apr 29 12:00	8,750	
2	23 Oct 29 12:00	15,500	
3	08 May 31 12:00	4,060	
4	04 Feb 39 12:00	6,300	
5	20 Apr 40 12:00	3,130	
6	06 Apr 41 12:00	4,160	
7	22 May 42 12:00	6,700	
8	15 Oct 42 12:00	22,400	
9	24 Mar 44 12:00	3,880	
10	18 Sep 45 12:00	8,050	≡
11	03 Jun 46 12:00	4,020	
12	15 Mar 47 12:00	1,600	
13	14 Apr 48 12:00	4,460	
14	31 Dec 48 12:00	4,230	
15	02 Feb 50 12:00	3,010	
16	05 Dec 50 12:00	9,150	
17	28 Apr 52 12:00	5,100	
18	22 Nov 52 12:00	9,820	
19	02 Mar 54 12:00	6,200	
20	19 Aug 55 12:00	10,700	
21	15 Mar 56 12:00	3,880	
22	10 Feb 57 12:00	3,420	
23	27 Mar 58 12:00	3,240	
24	03 Jun 59 12:00	6,800	
25	09 May 60 12:00	3,740	
26	19 Feb 61 12:00	4,700	
27	22 Mar 62 12:00	4,380	
28	20 Mar 63 12:00	5,190	~

Figure B-16. Tabulation of the Peak Flow Data for Back Creek.

To plot the data for this example, right-click on the data record and select **Plot**. A plot of the data will appear as shown in Figure B-17.

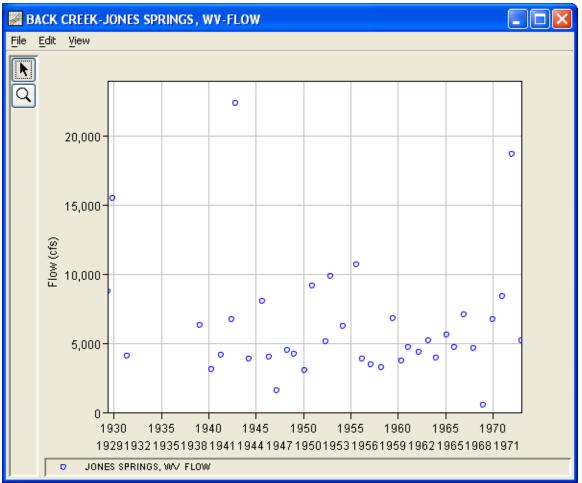


Figure B-17. Plot of Back Creek Data.

A Bulletin 17B and General Frequency analysis have been developed for this example. To open the Bulletin 17B analysis editor for test example 3, either double-click on the analysis labeled **FFA Test 3** from the study explorer, or from the **Analysis** menu select open and then select **FFA Test 3** from the list of available analyses. When FFA Test 3 is selected, the Bulletin 17B analysis editor will appear as shown in Figure B-18.

HEC-SSP User's Manual

🛎 Bulletin 17B Editor -FFA Test 3		
Name: FFA Test 3 Description: WRC Appendix 12, Example 3 - Test Flow Data Set: BACK CREEK-JONES SPRINGS, W DSS File Name: C:\Documents and Settings\q0hecm	 Confidence Limits Ocfaults (0.05, 0.95) User Entered Values Upper Limit	
Compute Plot Curve View Re	OK Cancel	Apply

Figure B-18. Bulletin 17B Analysis Editor with Test Example 3 Data Set.

Shown in Figure B-18 are the general settings that were used to perform this frequency analysis. As shown, the **Skew** option was set to use the **Weighted Skew**. To use the weighted skew option, the user must enter a value for the Regional Skew and the Regional Skew Mean Square Error (MSE). This selection requires the user to either look up a value from the generalized skew map of the United States, which is provided with Bulletin 17B, or develop a value from a regional analysis of nearby gages. In this example, a value of 0.5 was taken from the generalized skew MSE of 0.302 whenever regional skew values are taken from the map.

Also for this example, the **Expected Probability Curve** option was selected to be computed in addition to the Log Pearson III computed curve. The **Weibull** plotting position method was selected, as well as the default **Confidence Limits** of 0.05 (5 percent chance exceedance) and 0.95 (95% chance exceedance). Shown in Figure B-19 is the Bulletin 17B editor with the **Options Tab** selected.

🕌 Bulletin 1	17B Editor -FFA	Test 3					
Name:	FFA Test 3						
Description:	WRC Appendix 12, Exan	WRC Appendix 12, Example 3 - Testing and adjusting for a low outlier					
Flow Data Set:	BACK CREEK-JONES S	PRINGS, WV-FLOW		×			
DSS File Name:	C:\Documents and Settin	ngs\q0hecmjf\My Documents\SSP	Projects\SSP_Examples\SS	P_EXAMPLES.dss			
Report File:	C:\Documents and Settin	ngs\q0hecmjf\My Documents\SSP	Projects\SSP_Examples\Bu	lletin17bResults\FFA_Test_3\FFA_Test_3.rpt 🛄			
General Option:	S Tabular Results						
Low Outlier Thr	reshold	Historic Period Data		User Specified Frequency Ordinates			
🗌 Use Low Ou	utlier Threshold	📃 Use Historic Data		Use Values from Table below			
Value	0.000	Historic Period		Frequency in Percent			
		Start Year:		0.2			
		End Year:		1.0			
		High Threshold:	0.000	2.0			
		Historic Ev	uente la	10.0			
		Water Year	Peak	50.0			
				80.0			
				95.0			
Comp	ute Plot Curve	View Report Print		OK Cancel Apply			

Figure B-19. Bulletin 17B Editor with the Options Tab Selected for Test Example 3.

As shown in Figure B-19, none of the available options for modifying the frequency curve were selected for this test example. These options include the **Low Outlier Threshold** and **Historic Period Data**. Additionally, the option to override the default **Frequency Ordinates** was not selected.

Once all of the General and Optional settings are set or selected, the user can press the **Compute** button to perform the analysis. Once the computations have been completed a message window will open stating **Compute Complete.** Close this window and select the **Tabular Results** tab. The analysis window should look like Figure B-20.

HEC-SSP User's Manual

🛓 Bulletin 1	7B Editor -	FFA Test 3					
Name:	FFA Test 3						
Description:	WRC Appendix 12, Example 3 - Testing and adjusting for a low outlier						
Flow Data Set:		NES SPRINGS, WV-FLOW					
		· · ·					
DSS File Name:	C:\Documents and	d Settings\q0hecmjf\My Docu	uments\SSP	Projects\SSP_Examp	iles\SSP_EXAMPL	ES.dss	
Report File:	C:\Documents and	d Settings\q0hecmjf\My Doci	uments\SSP	Projects\SSP_Examp	iles\Bulletin17bRe	sults\FFA_Te	est_3\FFA_Test_3.rpt 🕻
General Options	Tabular Results]					
		Frequency Curve for	: BACK CRE	EK-JONES SPRINGS,	, WV-FLOW		
Percent Cl		Computed Curve		ected Prob.		Confidence L	
Exceeda	ance	Flow in cfs	F	low in cfs		Flow in ct	
					0.05		0.95
	0.2	37,159		45,353		59,928	26,632
	0.5	28,934 23,729		33,445		44,147 34,676	21,506 18,140
	2.0			20,457		26,933	15,154
	5.0	14,322		14,989		18,852	11,699
10.0 114,322			11,493		14,053	9,387	
20.0 8,449			8,563		10,157	7,260	
50.0 5,238			5,238		6,045	4,521	
	80.0	3,490		3,460		4,070	2,891
	90.0	2,901		2,856		3,434	2,334
	95.0	2,524		2,466		3,029	1,982
	99.0	2,004		1,924		2,471	1,506
System Statistics Number of Events							
	Log Tran:	sform: Flow,		Ever	nt		Number
Sta	atistic	Value		Historic Events		0	
Mean			3.741	High Outliers			0
Standard Dev			0.232	Low Outliers			1
Station Skew			0.624	Zero Or Missing			38
Regional Skew			0.500	Systematic Events Historic Period			
Weighted Skew			0.577	r liozofic r chou			
Adopted Skew			0.577				
Comp	ute Plot Cur	ve View Report	Print		ок		ancel Apply

Figure B-20. Bulletin 17B Editor with the Results Tab Selected for Test Example 3.

As shown in Figure B-20, the Frequency Curve table contains the following results:

Percent Chance Exceedance

Computed Curve (Log-Pearson III results)

Expected Probability Curve

Confidence Limits (5% and 95% chance exceedance curves)

On the bottom left-hand side of the results tab is a table of System Statistics for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom right-hand side of the results tab is a table of Number of Events showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (if historic data was entered).

In this analysis, the software detected 1 low outlier in the systematic record. As recommended in Bulletin 17B, if a low outlier is detected, then that data point will be removed and the Conditional Probability Adjustment will be used to recalculate the frequency curve and then the statistics without that point. Review the report file to see the original statistics, computed curves, the low outlier test, and recomputed curves.

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-21.

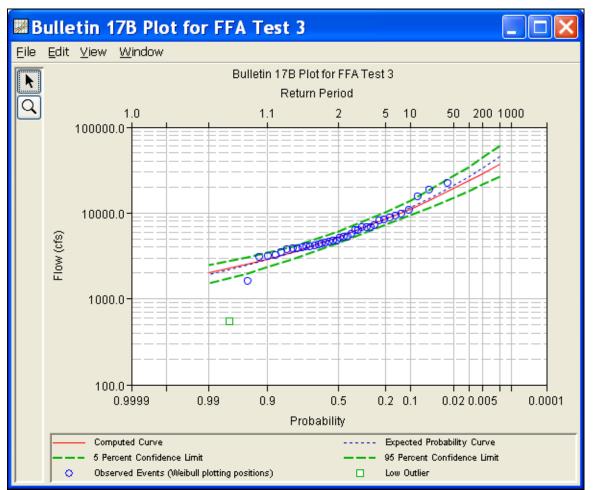


Figure B-21. Pot for Test Example 3.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of

the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-22 is the report file for test example 3.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

FFA_Test_3.rpt
ile Edit Search Format
ile: C:\Documents and Settings\q0hecmjfMy Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_3\FFA_Test_3.rpt
Bulletin 17B Frequency Analysis 20 Jun 2008 04:16 PM
Input Data
Analysis Name: FFA Test 3 Description: WRC Appendix 12, Example 3 - Testing and adjusting for a low outlier Back Creek near Jones Spring, WV WRC Appendix 12, Example 3 - Testing and adjusting for a low outlier Back Creek near Jones Spring, WV
Data Set Name: BACK CREEK-JONES SPRINGS, WV-FLOW DSS File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: /BACK CREEK/JONES SPRINGS, WV/FLOW/Oljan1900/IR-CENTURY//
Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletinl7bRe; XML File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletinl7bResul
Start Date: End Date:
Skew Option: Use Weighted Skew Regional Skew: 0.5 Regional Skew MSE: 0.302
Plotting Position Type: Weibull
Upper Confidence Level: 0.05 Lower Confidence Level: 0.95
Display ordinate values using 0 digits in fraction part of value
End of Input Data
Preliminary Results
<< Skew Weighting >>
Based on 38 events, mean-square error of station skew = 0.197 Mean-square error of regional skew = 0.302
<< Frequency Curve >> BACK CREEK-JOMES SPRINGS, WV-FLOW
Computed Expected Percent Confidence Limits Curve Probability Chance 0.05 0.95 FLOW, CFS Exceedance FLOW, CFS
27,933 31,314 0.2 43,279 20,460 1 23,968 26,190 0.5 35,953 17,924
1:1.1:1 1:1

Figure B-22. Report File for Test Example 3.

Example 4: Zero-Flood Years

The input data for Test 4 are the same as that for Example 4 in Appendix 12 of the WRC Guidelines. Test 4 illustrates the application to data that includes several zero flow years.

The data for this example is from Orestimba Creek in Newman, California. The period of record used for this example is from 1932 to 1973. To view the data from HEC-SSP, right-click on the data record labeled "**ORESTIMBA CREEK-NEWMAN, CA-FLOW**" in the study explorer and then select **Tabulate**. The data will appear as shown in Figure B-23.

👉 /ORESTIMBA CREEK/NEWMAN, CA/FL 🔳 🗖 🔀					
<u>File E</u> dit <u>V</u> iew					
		NEWMAN, CA			
Ordinate	Date / Time	FLOW			
Units		CFS	~		
Туре		INST-VAL	=		
1	08 Feb 32 12:00	4,260			
2	29 Jan 33 12:00	345			
3	01 Jan 34 12:00	516			
4	08 Apr 35 12:00	1,320			
5	13 Feb 36 12:00	1,200			
6	13 Feb 37 12:00	2,180			
7	11 Feb 38 12:00	3,230			
8	09 Mar 39 12:00	115			
9	27 Feb 40 12:00	3,440	=		
10	04 Apr 41 12:00	3,070			
11	24 Jan 42 12:00	1,880			
12	21 Jan 43 12:00	6,450			
13	29 Feb 44 12:00	1,290			
14	02 Feb 45 12:00	5,970			
15	25 Dec 45 12:00	782			
16	30 Sep 47 12:00	0			
17	30 Sep 48 12:00	0			
18	12 Mar 49 12:00	335			
19	05 Feb 50 12:00	175			
20	03 Dec 50 12:00	2,920			
21	12 Jan 52 12:00	3,660			
22	07 Dec 52 12:00	147			
23	30 Sep 54 12:00	0			
24	19 Jan 55 12:00	16			
25	23 Dec 55 12:00	5,620			
26	24 Feb 57 12:00	1,440			
27	02 Apr 58 12:00	10,200			
28	16 Feb 59 12:00	5,380	~		

Figure B-23. Tabulation of the Peak Flow Data for Orestimba Creek.

To plot the data for this example, right-click on the data record and then select **Plot**. A plot of the data will appear as shown in Figure B-24. The years with peak flows measuring zero are visible.

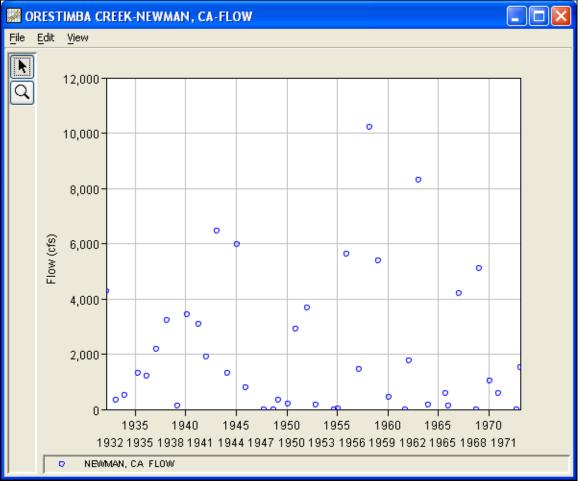


Figure B-24. Plot of Orestimba Creek Data.

A Bulletin 17B and General Frequency analysis have been developed for this example. To open the Bulletin 17B analysis editor for test example 4, either double-click on the analysis labeled **FFA Test 4** from the study explorer, or from the **Analysis** menu select open, then select **FFA Test 4** from the list of available analyses. When FFA Test 4 is selected, the Bulletin 17B analysis editor will appear as shown in Figure B-25. HEC-SSP User's Manual

🕌 Bulletin 17B Editor -	FFA Test 4*		
Flow Data Set: ORESTIMBA CRE DSS File Name: C:\Documents and	2, Example 4 - Zero floc EK-NEWMAN, CA-FLC d Settings\q0hecmjfMf d Settings\q0hecmjfMf s -0.3 0.302	y Documents\SSP Projects\SSP_Example	Confidence Limits O Defaults (0.05, 0.95) O User Entered Values Upper Limit: 0.000 Time Window Modification DSS Range is 2/8/1932 - 2/11/1973 start date end date
Compute Plot Cur	rve View Repor	t	OK Cancel Apply

Figure B-25. Bulletin 17B Analysis Editor with Test Example 4 Data Set.

Shown in Figure B-25 are the general settings that were used to perform this frequency analysis. As shown, the **Skew** option was set to use the **Weighted Skew**. To use the weighted skew option, the user must enter a value for the Regional Skew and the Regional Skew Mean Square Error (MSE). This selection requires the user to either look up a value from the generalized skew map of the United States, which is provided with Bulletin 17B, or develop a value from a regional analysis of nearby gages. In this example a value of -0.3 was taken from the generalized skew MSE of 0.302 whenever regional skew values are taken from the map.

Also for this example, the **Expected Probability Curve** option was selected to be computed in addition to the Log Pearson III computed curve. The **Weibull** plotting position method was selected, as well as the default **Confidence Limits** of 0.05 (5 percent chance exceedance) and 0.95 (95% chance exceedance). Shown in Figure B-26 is the Bulletin 17B editor with the **Options Tab** selected.

🕌 Bulletin 🖆	17B Editor -FFA	Test 4*			
Name: Description: Flow Data Set: DSS File Name: Report File: General Option	FFA Test 4 WRC Appendix 12, Exam ORESTIMBA CREEK-NE C:Documents and Settin C:Documents and Settin S Tabular Results	ple 4 - Zero flood years WMAN, CA-FLOW Igs\q0hecmjfMy Documents\SSP	Projects\SSP_Examples\Bull	P_EXAMPLES.dss letin17bResults\FFA_Test_4\FFA_T User Specified Frequency Ordina Use Values from Table belov Frequency in Percent	ates
Comp	ute Plot Curve	View Report Print		OK Cancel	Apply

Figure B-26. Bulletin 17B Editor with the Options Tab Selected for Test Example 4.

As shown in Figure B-26, none of the available options for modifying the frequency curve were selected for this test example. These options include the **Low Outlier Threshold** and **Historic Period Data**. Additionally, the option to override the default **Frequency Ordinates** was not selected.

Once all of the General and Optional settings are set or selected, the user can press the **Compute** button to perform the analysis. Once the computations have been completed a message window will open stating **Compute Complete.** Close this window and then select the **Tabular Results** tab. The analysis window should look Figure B-27.

<mark>4 Bulletin</mark> 1	17B Editor	-FFA Test 4*				
Name:	FFA Test 4					
Description:	WRC Appendix 1	2, Example 4 - Zero flood yea	rs			
Flow Data Set:		EEK-NEWMAN, CA-FLOW				
DSS File Name:		·				
	C:\Documents a	nd Settings\q0hecmjf\My Docu	uments(SSP	Projects\SSP_Example	stSSP_EXAMPLES.ds	
Report File:	C:\Documents a	nd Settings\q0hecmjf\My Doci	uments\SSP	Projects\SSP_Example	s\Bulletin17bResults\	FFA_Test_4\FFA_Test_4.rpt
General Option:	s Tabular Result	s				
		Frequency Curve fo	r: ORESTIM	BA CREEK-NEWMAN, C	A-FLOW	
Percent C	hance	Computed Curve	Exp	ected Prob.	Confic	dence Limits
Exceeda	ance	Flow in cfs	F	low in cfs	Flo	ow in cfs
					0.05	0.95
	0.2	32,545		39,023	80,0	
	0.5	24,623		28,469	57,3	
	1.0	19,296		21,763	42,9	
	2.0	14,572 9,289		16,030 9,920	30,7 18.0	
	10.0	6,041		6,308	10,9	
	20.0	3,450		3,534	5,7	
	50.0	1,043		1,043	1,5	59 70
	80.0	266		257		04 18
	90.0	121		113		96 6
	95.0	61		54		06 2
	99.0	15		12		32
	Syste	m Statistics			Number of Ever	nts
	Log Tra	nsform: Flow,		Event		Number
St	atistic	Value		Historic Events High Outliers		
Mean			2.966	Low Outliers		
Standard Dev				Zero Or Missing		
Station Skew Regional Skew		-0.568 -0.300		Systematic Events		4
Weighted Skew			-0.300	Historic Period		
Adopted Skew			-0.473			
Comp	oute Plot Cu	urve View Report	Print		ОК	Cancel Apply

Figure B-27. Bulletin 17B Editor with the Results Tab Selected for Test Example 4.

As shown in Figure B-27, the Frequency Curve table contains the following results:

Percent Chance Exceedance

Computed Curve (Log-Pearson III results)

Expected Probability Curve

Confidence Limits (5% and 95% chance exceedance curves)

On the bottom left-hand side of the results tab is a table of System Statistics for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom right-hand side of the results tab is a table of Number of Events showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (if historic data was entered).

As noted earlier, there were 6 zero values in this record, and also a low outlier. A zero value causes difficulty because the first step in fitting a Log Pearson III distribution is computing the base-10 log of each flow value, which is undefined for zero. Bulletin 17B recommends removing the zero values (and the low outlier) from the systematic record to compute a preliminary frequency curve, and then adjusting that curve with the Conditional Probability Adjustment. The final frequency curve and statistics are shown in the table, and the preliminary calculations can be reviewed in the report file.

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-28.

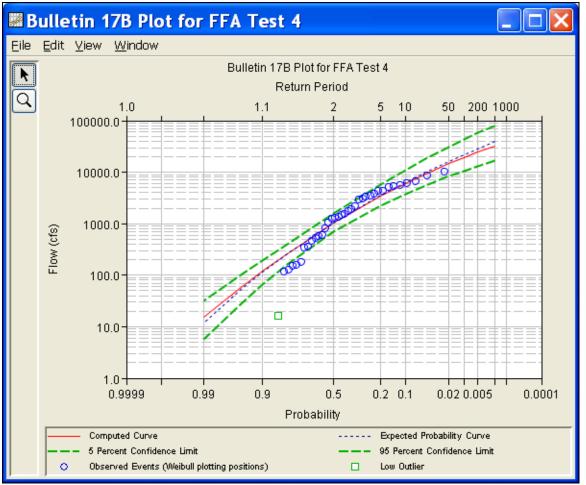


Figure B-28. Plot of Test Example 4 Results.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-29 is the report file for Test Example 4.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

IFFA_Test_4.rpt
ile Edit Search Format
ile: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_4\FFA_Test_4.rpt
Bulletin 17B Frequency Analysis 20 Jun 2008 04:17 PM
Input Data Analysis Name: FFA Test 4
Description: WRC Appendix 12, Example 4 - Zero flood years Orestimba Creek near Newman, CA WRC Appendix 12, Example 4 - Zero flood years Orestimba Creek near Newman, CA
Data Set Name: ORESTIMBA CREEK-NEWMAN, CA-FLOW DSS File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: /ORESTIMBA CREEK/NEWMAN, CA/FLOW/Oljan1900/IR-CENTURY//
Report File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bRe: XML File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResul
Start Date: End Date:
Skew Option: Use Weighted Skew Regional Skew: -0.3 Regional Skew MSE: 0.302
Plotting Position Type: Weibull
Upper Confidence Level: 0.05 Lower Confidence Level: 0.95
Display ordinate values using 0 digits in fraction part of value
End of Input Data
Preliminary Results
Note: Adopted skew equals station skew and preliminary frequency statistics are for the conditional frequency curve because of zero or missing events.
<< Frequency Curve >> ORESTIMBA CREEK-NEWMAN, CA-FLOW
Computed Expected Percent Confidence Limits Curve Probability Chance 0.05 0.95 FLOW, CFS Exceedance FLOW, CFS
20,376 22,737 0.2 46,565 11,197 1 17,439 19,187 0.5 38,604 9,771 1 15,067 16,403 1.0 32,382 8,593 1
12,590 13,525 2.0 26,116 7,332
1:11:1 1:1
[hdath]

Figure B-29. HEC-SSP Report File for Test Example 4.

Example 5: Confidence Limits and Low Threshold Discharge

This test illustrates the use of user-entered confidence limits. Probabilities of .01 and .99 were entered for the computed confidence limit curves. This data set also includes two very low values, the higher of which is just above the default low outlier threshold. This example therefore also demonstrates the use of a user-entered low outlier threshold set to be higher than both values.

The data for this example is from Kaskaskia River in Vandalia, Illinois. The period of record used for this example is from 1908 to 1970. To view the data from HEC-SSP, right-click on the data record labeled "**KASKASKIA RIVER-VANDALIA, IL-FLOW**" in the study explorer and then select **Tabulate**. The data will appear as shown in Figure B-30.

🁙 /KASKASKIA RIVER/VANDALIA, IL/FL 🔳 🗖 💈					
<u>File Edit V</u> iew					
			_		
		VANDALIA, IL			
Outlinets	Data (Time				
Ordinate	Date / Time	FLOW			
31	12 Jun 41 12:00	4,560	^		
32	12 Jul 42 12:00	13,600			
33	18 May 43 12:00	52,200			
34	24 Apr 44 12:00	31,000			
35	10 Jun 45 12:00	21,500			
36	04 May 46 12:00	13,000			
37	10 Jun 47 12:00	12,300			
38	28 Mar 48 12:00	19,000			
39	16 Feb 49 12:00	25,000			
40	04 Jan 50 12:00	51,300			
41	29 Jun 51 12:00	31,000			
42	15 Apr 52 12:00	10,500			
43	05 Mar 53 12:00	5,680			
44	19 Apr 54 12:00	505			
45	25 Apr 55 12:00	5,000			
46	27 Feb 56 12:00	7,840			
47	29 Jun 57 12:00	62,700			
48	04 Aug 58 12:00	12,400			
49	12 Feb 59 12:00	17,200			
50	30 Jun 60 12:00	11,800			
51	10 Apr 61 12:00	34,400			
52	25 Mar 62 12:00	17,100			
53	22 May 63 12:00	9,000	Ξ		
54	04 May 64 12:00	8,500			
55	04 May 65 12:00	5,350			
56	19 May 66 12:00	11,900			
57	10 Dec 66 12:00	27,000			
58	23 Dec 67 12:00	20,800			
59	31 Jan 69 12:00	20,700			
60	16 Jun 70 12:00	30,000	~		

Figure B-30. Tabulation of the Peak Flow Data for Kaskaskia River.

To plot the data for this example, right-click on the data record and then select **Plot**. A plot of the data will appear as shown in Figure B-31.

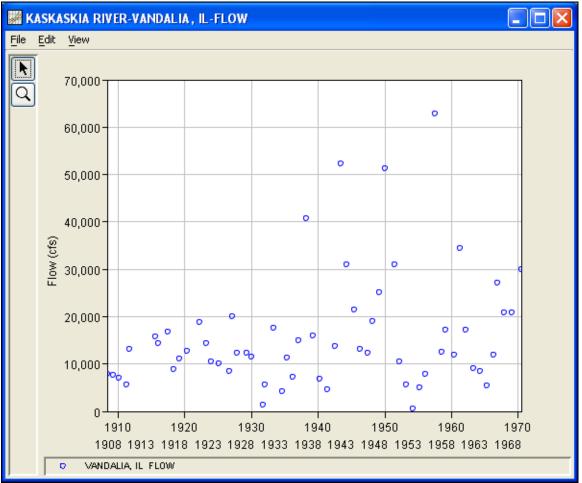


Figure B-31. HEC-SSP Plot of the Kaskaskia River Data.

A Bulletin 17B and General Frequency analysis have been developed for this example. To open the Bulletin 17B analysis editor for test example 5, either double-click on the analysis labeled **FFA Test 5** from the study explorer, or from the **Analysis** menu select **Open** and then select **FFA Test 5** from the list of available analyses. When FFA Test 5 is selected, the Bulletin 17B analysis editor will appear as shown in Figure B-32. HEC-SSP User's Manual

🛓 Bulletin 17B Editor	-FFA Test 5		
Name: FFA Test 5 Description: Example using Flow Data Set: KASKASKIA RI DSS File Name: C:\Documents	g other confidence limits a VER-VANDALIA, IL-FLOV and Settings\q0hecmjfM and Settings\q0hecmjfM utts -0.4 0.302	/ly Documents\SSP Projects\SSP_Example	Confidence Limits Upper Limit: 0.01 0.01 0.09 Time Window Modification DSS Range is 5/6/1908 - 6/16/1970 start date end date
Compute Piot	Curve View Repo	rt Print	OK Cancel Apply

Figure B-32. Bulletin 17B Analysis Editor for Test Example 5.

Shown in Figure B-32 are the general settings that were used to perform this frequency analysis. As shown, the **Skew** option was set to use the **Weighted Skew**. To use the weighted skew option, the user must enter a value for the Regional Skew and the Regional Skew Mean Square Error (MSE). This selection requires the user to either look up a value from the generalized skew map of the United States, which is provided with Bulletin 17B, or develop a value from a regional analysis of nearby gages. In this example a value of -0.4 was taken from the generalized skew MSE of 0.302 whenever regional skew values are taken from the map.

Also for this example, the **Expected Probability Curve** option was selected to be computed in addition to the Log Pearson III computed curve. The default method of **Weibull** plotting positions was selected. The default values for confidence limits (.05 and .95) were changed to 0.01 (1 percent chance exceedance) and 0.99 (99% chance exceedance). Shown in Figure B-33 is the Bulletin 17B editor with the **Options Tab** selected.

🕌 Bulletin 17B Editor -FFA T	est 5			
Bulletin 17B Editor -FFA Test 5 Name: FFA Test 5 Description: Example using other confidence limits and a base peak discharge Flow Data Set: KASKASKIA RIVER-VANDALIA, IL-FLOW DSS File Name: C:Documents and Settings\q0hecmjfMy Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss Report File: C:Documents and Settings\q0hecmjfMy Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_5\FFA_Test General Options Tabular Results Use Historic Period Data Value 2000 Historic Period Start Year: End Year: High Threshold: Use Values from Table below				
	Historic Events Water Year Peak	20.0 50.0 80.0 90.0 95.0 99.0 99.0		
Compute Plot Curve	View Report Print	OK Cancel Apply		

Figure B-33. Bulletin 17B Editor with the Options Tab Shown for Test Example 5.

As shown in Figure B-33, a **Low Outlier Threshold** of 2000 was entered. In the initial computation with this data (which the reader can reproduce by Computing without the "Use Low Outlier Threshold" box checked), the default low outlier threshold was 1,253 cfs, just below the second lowest value of 1,270 cfs. A look at the statistics and computed frequency curve from that run shows that the 1,270 cfs value is well below the computed curve and with a station skew of -0.21 the frequency curve does not fit the upper data well. By choosing to also censor the 1,270 cfs value with a threshold of 2000 cfs, the fit is improved. None of the other available options, such as **Historic Period Data** and the option to override the default **Frequency Ordinates** were selected for this test example.

Once all of the General and Optional settings are set or selected, the user can press the **Compute** button to perform the analysis. Once the computations have been completed a message window will open stating **Compute Complete**. Close this window and then select the

Tabular Results tab from the analysis window. The analysis window should look Figure B-34.

🕌 Bulletin 1	7B Editor -	FFA Test 5				
Name:	FFA Test 5					
Description:	Example using oth	er confidence limits and a b	ase peak di	scharge		
Flow Data Set:	KASKASKIA RIVER	-VANDALIA, IL-FLOW				~
DSS File Name:		•		Designate 10000 Engeneration		
	C:\Documents and	l Settings\q0hecmjf\My Docu	iments\SSP	Projects\SSP_Examples	RSSP_EXAMPLES.dss	
Report File:	C:\Documents and	l Settings\q0hecmjf\My Docu	iments\SSP	Projects\SSP_Examples	\Bulletin17bResults\FFA_	rest_5\FFA_Test_5.rpt 🛄
General Options	3 Tabular Results					
		Frequency Curve fi	or: KASKASI	KIA RIVER-VANDALIA, IL-	FLOW	
Percent Cl Exceeda		Computed Curve Flow in cfs		ected Prob. Iow in cfs	Confidence Flow in	
					0.01	0.99
	0.2	92,314		102,679	163,830	62,771
	0.5	73,871		79,994	123,959	51,997
	2.0	61,633 50,712		65,543 53,082	98,905	44,582
	5.0	38,061		39,138	77,643 54,542	29,433
	10.0	29,659		30,178	40,301	23,617
	20.0	22,082		22,277	28,410	18,050
	50.0	12,824		12,824	15,554	10,554
	80.0	7,652		7,593	9,369	5,937
	90.0	5,905		5,820	7,396	4,367
	95.0	4,792		4,685	6,147	3,393
	99.0	3,283		3,136	4,428	2,131
	System	Statistics			Number of Events	
	Log Trans	sform: Flow,		Event Number		
Sta	atistic	Value		Historic Events		0
Mean			4.116	High Outliers Low Outliers		0
Standard Dev			0.274	Zero Or Missing		2
Station Skew			0.399	Systematic Events		60
Regional Skew			-0.400	Historic Period		00
Weighted Skew Adopted Skew			0.182			
Auopieu SkeW		<u> </u>	0.182			
Comp	ute Plot Cur	/e View Report	Print			Cancel Apply
Comp		view Report	Phil			Apply

Figure B-34. Bulletin 17B Editor with the Results Tab Selected for Test Example 5.

As shown in Figure B-34, the Frequency Curve table contains the following results:

Percent Chance Exceedance

Computed Curve (Log-Pearson III results)

Expected Probability Curve

Confidence Limits (1% and 99% chance exceedance curves)

On the bottom left-hand side of the results tab is a table of System Statistics for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom right-hand side of the results tab is a table of Number of Events showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (only if historic data was entered).

With the user-defined low-outlier threshold of 2000 cfs, there are two low-outliers detected. The analysis report shows the program omitted these values and used the Conditional Probability Adjustment to recompute the resulting frequency curve and statistics. The report file (described below) includes the preliminary computation before removal of outliers and the default and user-defined outlier thresholds, as well as the final frequency curve and statistics.

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-35.

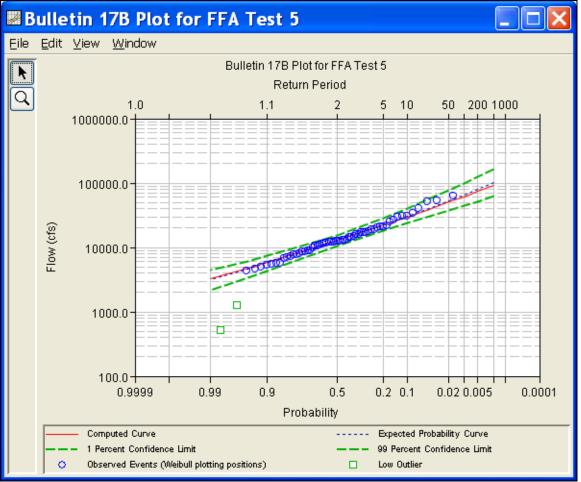


Figure B-35. Plot of the Frequency Curve Results for Test Example 5.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-36 is the report file for Test Example 5.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

FFA_Test_5.rpt
ile <u>E</u> dit <u>S</u> earch F <u>o</u> rmat
ile: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_5\FFA_Test_5.rpt
Bulletin 17B Frequency Analysis 24 Jun 2008 08:48 AM
Input Data Analysis Name: FFA Test 5
Description: Example using other confidence limits and a base peak discharge Kaskaskia River at Vandalia, IL
Data Set Name: KASKASKIA RIVER-VANDALIA, IL-FLOW DSS File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: /KASKASKIA RIVER/VANDALIA, IL/FLOW/Oljan1900/IR-CENTURY//
Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletinl7bRe; XML File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletinl7bResul [.]
Start Date: End Date:
Skew Option: Use Weighted Skew Regional Skew: -0.4 Regional Skew MSE: 0.302
Plotting Position Type: Weibull
Upper Confidence Level: 0.01 Lower Confidence Level: 0.99 Use Low Outlier Threshold Low Outlier Threshold: 2000.0
Display ordinate values using 0 digits in fraction part of value
End of Input Data
Preliminary Results
<< Skew Weighting >>
Based on 60 events, mean-square error of station skew = 0.199 Mean-square error of regional skew = 0.302
<< Frequency Curve >> KASKASKIA RIVER-VANDALIA, IL-FLOW
Computed Expected Percent Confidence Limits Curve Probability Chance 0.01 0.99 FLOW, CFS Exceedance FLOW, CFS
1:1.1:1 1:1

Figure B-36. Report File for Test Example 5.

Example 6: Use of Historic Data and Median Plotting Position

This test demonstrates how to use historic information to improve a flow frequency analysis. A historic flood peak of 15,000 cfs which occurred in 1843 is included in the analysis. This value is the highest known value up to the present time (1974 for this example), even though the systematic record stopped in 1955.

The data for this example is from Ridley Creek in Moylan, Pennsylvania. The period of record used for this example is from 1932 to 1955. To view the data from HEC-SSP, right-click on the data record labeled "**RIDLEY CREEK-MOYLAN**, **PA-FLOW**" in the study explorer and then select **Tabulate**. The data will appear as shown in Figure B-37.

🍰 /RIDLEY CREEK/MOYLAN, PA/FLOW/ 🔳 🗖 🔀						
<u>File E</u> dit <u>V</u> iew						
		MOYLAN, PA				
Ordinate	Date / Time	FLOW				
Units		CFS				
Туре		INST-VAL				
1	28 Mar 32 12:00	891.0				
2	23 Aug 33 12:00	2,680.0				
3	05 Mar 34 12:00	1,080.0				
4	09 Jul 35 12:00	3,000.0				
5	03 Jan 36 12:00	1,590.0				
6	22 Feb 37 12:00	770.0				
7	23 Jul 38 12:00	3,320.0				
8	03 Feb 39 12:00	978.0				
9	15 Mar 40 12:00	1,770.0				
10	07 Feb 41 12:00	746.0				
11	13 Aug 42 12:00	1,000.0				
12	30 Dec 42 12:00	980.0				
13	06 Jan 44 12:00	865.0				
14	18 Sep 45 12:00	1,040.0				
15	26 Dec 45 12:00	1,000.0				
16	22 May 47 12:00	483.0				
17	05 May 48 12:00	740.0				
18	30 Dec 48 12:00	1,040.0				
19	03 Aug 50 12:00	1,590.0				
20	25 Nov 50 12:00	5,720.0				
21	11 Mar 52 12:00	1,490.0				
22	22 Nov 52 12:00	918.0				
23	14 Dec 53 12:00	670.0				
24	18 Aug 55 12:00	4,390.0				

Figure B-37. Tabulation of the Peak Flow Data for Ridley Creek.

To plot the data for this example, right-click on the data record and then select **Plot**. A plot of the data will appear as shown in Figure B-38.

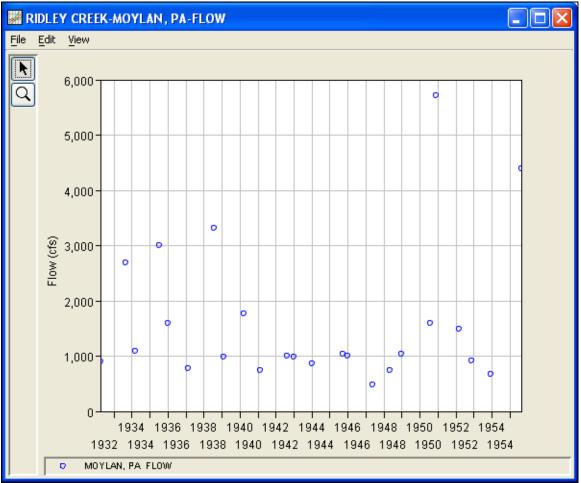


Figure B-38. Plot of the Ridley Creek Data.

A Bulletin 17B and General Frequency analysis have been developed for this example. To open the Bulletin 17B analysis editor for test example 6, either double-click on the analysis labeled **FFA Test 6** from the study explorer, or from the **Analysis** menu select open, then select **FFA Test 6** from the list of available analyses. When FFA Test 6 is selected, the Bulletin 17B analysis editor will appear as shown in Figure B-39.

HEC-SSP User's Manual

🕌 Bulletin 17B Editor -FFA Test 6			×
Name: FFA Test 6 Description: Example using Median plot position Flow Data Set: RIDLEY CREEK-MOYLAN, PA-FLO DSS File Name: C:\Documents and Settings\q0hect	ns, historic data, and period of knowledge beyo W mjftMy Documents\SSP Projects\SSP_Example mjftMy Documents\SSP Projects\SSP_Example Plotting Position Veibull (A and B = 0) Median (A and B = 0.3) Hazen (A and B = 0.5) Other (Specify A, B) Plotting position computed using formula		
Expected Probability Curve O Compute Expected Prob. Curve Do Not Compute Expected Prob. Curve	using formula (m-A)/(n+1-A-B) Where: m=rank, 1=largest N=Number of Years A,B=Constants A: 0.000 B: 0.000	Time Window Modification DSS Range is 3/28/1932 - 8/18/1955 start date end date	
Compute Plot Curve View R	eport Print	OK Cancel Apply	

Figure B-39. Bulletin 17B Analysis Editor for Test Example 6.

Shown in Figure B-39 are the general settings that were used to perform this frequency analysis. As shown, the **Skew** option was set to use the **Weighted Skew**. To use the weighted skew option, the user must enter a value for the Regional Skew and the Regional Skew Mean Square Error (MSE). This selection requires the user to either look up a value from the generalized skew map of the United States, which is provided with Bulletin 17B, or develop a value from a regional analysis of nearby gages. In this example a value of 0.4 was taken from the generalized skew MSE of 0.302 whenever regional skew values are taken from the map.

Also for this example, the **Expected Probability Curve** option was selected to be computed in addition to the Log Pearson III computed curve. The **Median** plotting position method was selected, as well as the default **Confidence Limits** of 0.05 (5 percent chance exceedance) and 0.95 (95% chance exceedance). Shown in Figure B-40 is the Bulletin 17B editor with the **Options Tab** selected.

🕌 Bulletin 1	7B Editor -FFA	Test 6						
Name:	FFA Test 6							
Description:	Example using Median p	lot positions, historic data, an	d period of knowledge beyond la	st year of data				
Flow Data Set:	RIDLEY CREEK-MOYLA	RIDLEY CREEK-MOYLAN, PA-FLOW						
DSS File Name:	C:\Documents and Settin	ngs\q0hecmjf\My Documents\S	SSP Projects\SSP_Examples\SS	P_EXAMPLES.dss				
Report File:	C:\Documents and Settin	ngs\q0hecmjf\My Documents\8	SSP Projects\SSP_Examples\Bul	lletin17bResults\FFA_Test_6\FFA_	Test_6.rpt 🛄			
General Options	Tabular Results							
Low Outlier Thr	eshold	Historic Period Data		User Specified Frequency Ordi	nates			
📃 Use Low Ou	utlier Threshold	🗹 Use Historic Data		Use Values from Table be	low			
Value	0.000	Historic Period		Frequency in Percent				
		Start Year:			0.2			
		End Year:	1974		1.0			
		High Threshold:			2.0			
			in Encode		10.0			
		Water Year	ric Events Peak		50.0			
		184	3 15000.0		80.0 90.0			
					95.0 99.0			
Comp	ute Plot Curve	View Report Print]	OK Cancel	Apply			

Figure B-40. Bulletin 17B Analysis Editor with Options Tab Shown for Test Example 6.

As shown in Figure B-40, the Historic Period Data option has been selected to reflect a historical flood event of 15,000 cfs in 1843 and an analysis period from 1843 to 1974. Historic data is used to account for historic flood events large enough to be relevant to the analysis and not contained in the systematic data record. The additional information provided by historic data can improve the flood frequency analysis, especially when the data collection period for a given area is relatively short. Information for a **Historic Flood Peak** has been entered to account for a peak flow of 15,000 cfs in the 1843 water year. The Historic Period Start Year has been left blank. By default this value will be the earliest year found in the historic flood peak data or the systematic record. Therefore for this example, 1843 will automatically be used for the Start Year of the Historic Period. An End Year of 1974 has been entered. The systematic record for the gage ended in 1955, however when this analysis was performed in 1974, no other flood peaks of consequence had been observed between 1955 and 1974. Therefore, 1974 is set as the End Year for the historic period analysis.

Other features on this tab include the **Low Outlier Threshold** and the option to override the default **Frequency Ordinates**. Neither option is selected in this example.

Once all of the General and Optional settings are set or selected, the user can press the **Compute** button to perform the analysis. Once the computations have been completed a message window will open stating **Compute Complete.** Close this window and then select the **Tabular Results** tab from the analysis window. The analysis window should look Figure B-41.

🛓 Bulletin 1	17B Editor	-FFA Test 6						
Name:	FFA Test 6							
Description:	Example using N	Example using Median plot positions, historic data, and period of knowledge beyond last year of data 📃						
Flow Data Set:	RIDLEY CREEK-MOYLAN, PA-FLOW							
DSS File Name:		•						
	C:\Documents a	nd Settings\q0hecmjf\My Docu	ments\SSP	Projects\SSP_Examples\	SSP_EXAMPLES.dss			
Report File:	C:\Documents a	nd Settings\q0hecmjf\My Docu	ments\SSP	Projects\SSP_Examples\	Bulletin17bResults\FFA_Te	st_6\FFA_Test_6.rpt 🕻		
General Option	s Tabular Resul	ts						
		Frequency Curve	for: RIDLEY	CREEK-MOYLAN, PA-FL	ow			
Percent C	hance	Computed Curve	Exp	ected Prob.	Confidence Li	mits		
Exceed:	ance	Flow in cfs	F	low in cfs	Flow in cfs	3		
					0.05	0.95		
	0.2	17,500	28,945		41,571	10,177		
	0.5	12,096		17,226	25,680	7,517		
	1.0	9,065	11,760		17,650	5,924		
	2.0	6,724	8,084		11,994 	4,621		
	5.0	4,435		3,359	4,595	2,427		
	20.0	2,181		2,243	2,920	1,734		
	50.0	1,198		1,198	1,495	949		
	80.0	754		743	952	557		
	90.0	622		607	800	441		
	95.0	543		525	709	373		
	99.0	444		420	594	289		
	Syste	m Statistics			Number of Events			
	Log Tra	nsform: Flow,		Event Nu		Number		
St	atistic	Value		Historic Events		1		
Mean			3.120	High Outliers		0		
Standard Dev			0.284	Low Outliers		0		
Station Skew 1.078			Zero Or Missing Systematic Events		24			
Regional Skew 0.400				Historic Period		132		
Veighted Skew U.890						132		
Adopted Skew			0.890					
Comp	oute Plot C	urve View Report	Print		ок Са	ncel Apply		
Comb	Figuro					Not Abbly		

Figure B-41. Bulletin 17B Editor with the Results Tab Selected for Test Example 6.

As shown in Figure B-41, the Frequency Curve table contains the following results:

Percent Chance Exceedance

Computed Curve (Log-Pearson III results)

Expected Probability Curve

Confidence Limits (5% and 95% chance exceedance curves)

On the bottom left-hand side of the results tab is a table of System Statistics for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom right-hand side of the results tab is a table of Number of Events showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (if historic data was entered).

This example reports one historical flood event, and a historical period of 132 years, between 1843 and 1974. The reported statistics reflect the use of the historical data adjustment outlined in Bulletin 17B Appendix 6. The report file (described below) shows the initial computation of the statistics and frequency curve before the historical data was used, and the resulting statistics and frequency curve after the historical data is taken into account.

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-42.

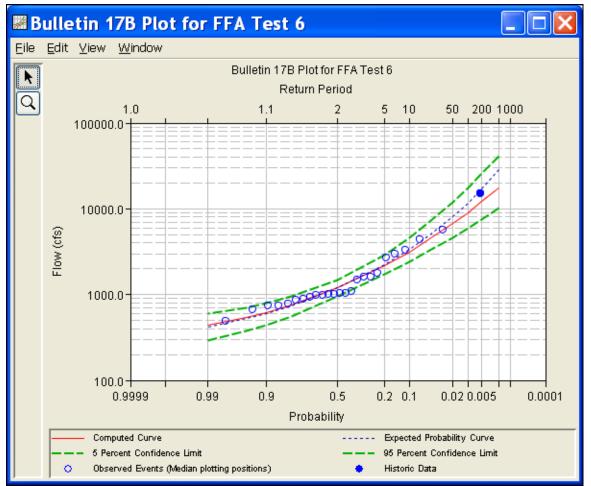


Figure B-42. Plot of the Frequency Curve Results for Test Example 6.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-43 is the report file for Test Example 6.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and

the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

In FFA_Test_6.rpt	×						
Eile Edit Search Format							
File: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\Bulletin17bResults\FFA_Test_6\FFA_Test_6.rpt							
Bulletin 17B Frequency Analysis 24 Jun 2008 09:19 AM	^						
Input Data	=						
Analysis Name: FFA Test 6 Description: Example using Median plot positions, historic data, and period of knowledge beyond last year Ridley Creek at Moylan, PA Example using Median plot positions, historic data, and period of knowledge beyond last year of data Ridley Creek at Moylan, PA Example using Median plot positions, historic data, and period of knowledge beyond last year of data Ridley Creek at Moylan, PA							
Data Set Name: RIDLEY CREEK-MOYLAN, PA-FLOW DSS File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.c DSS Pathname: /RIDLEY CREEK/MOYLAN, PA/FLOW/Oljan1900/IR-CENTURY//	iss						
Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletinl7h XML File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Bulletinl7bRes							
Start Date: End Date:							
Skew Option: Use Weighted Skew Regional Skew: 0.4 Regional Skew MSE: 0.302							
Plotting Position Type: Median							
Upper Confidence Level: 0.05 Lower Confidence Level: 0.95							
Use Historic Data Historic Period Start Year: Historic Period End Year: 1974 Year: 1843 Value: 15,000							
Display ordinate values using 0 digits in fraction part of value							
End of Input Data							
Preliminary Results							
<< Plotting Positions >> RIDLEY CREEK-MOYLAN, PA-FLOW							
Events Analyzed Ordered Events							
FLOW Water FLOW Median Day Mon Year CFS Rank Year CFS Plot Pos 							
28 Mar 1932 891 1 1951 5,720 2.87 23 Aug 1933 2,680 2 1955 4,390 6.97							
05 Mar 1934 1,080 3 1938 3,320 11.07	~						
1:1.1:1 1:1							

Figure B-43. HEC-SSP Report File for Test Example 6.

Example 7: Analyzing Stage Data

This example demonstrates how to use the General Frequency analysis to analyze stage data. The data for this example is from the Cedar Rapids, Iowa stream gage (gage id 05464500). The period of record used for this example is from 1851 to 2007. In addition to the systematic record, an historic flooding event occurred in June 2008. To view the data, right-click on the data record labeled "**CEDAR RAPIDS, STAGE DATA**" in the study explorer and then select **Tabulate**. The data will appear as shown in Figure B-44.

🔺 /CEDAR RIVER/CEDAR RAPID 🔳 🗖 🔀							
<u>E</u> ile <u>E</u> dit <u>V</u> iew							
Ordinate	Date / Time	CEDAR RAPIDS, IA STAGE-ANNUAL USGS					
Units		FEET 🔨					
Туре		INST-VAL					
1	01 Jun 1851, 24:00	20.000					
2	31 May 1903, 24:00	16.850					
3	26 Mar 1904, 24:00	6.450					
4	23 Mar 1905, 24:00	9.050					
5	30 Mar 1906, 24:00	17.600					
6	20 Jul 1907, 24:00	8.500					
7	30 May 1908, 24:00	8.800					
8	30 Mar 1909, 24:00	9.100					
9	14 Mar 1910, 24:00	9.600					
10	16 Feb 1911, 24:00	7.100					
11	01 Apr 1912, 24:00	17.200					
12	18 Mar 1913, 24:00	9.200					
13	19 Jun 1914, 24:00	7.800					
14	28 Mar 1915, 24:00	12.000					
15	30 Mar 1916, 24:00	10.000					
16	26 Mar 1917, 24:00	17.400					
17	07 Jun 1918, 24:00	11.000					
18	20 Mar 1919, 24:00	11.400					
19	30 Mar 1920, 24:00	7.600 🗸					

Figure B-44. Tabulation of the Peak Stage Data for Cedar Rapids, Iowa.

To plot the data for this example, right-click on the data record and then select **Plot**. A plot of the data will appear as shown in Figure B-45.

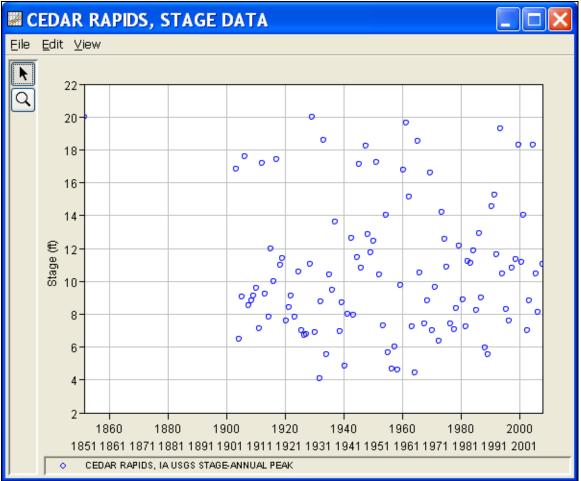


Figure B-45. Plot of the Cedar Rapids Data.

A General Frequency analysis has been developed for this example. To open the General Frequency analysis editor for Test Example 7, either double-click on the analysis labeled **STAGE ANALYSIS TEST 7** from the study explorer, or from the **Analysis** menu select open, then select **STAGE ANALYSIS TEST 7** from the list of available analyses. When test 7 is opened, the General Frequency analysis editor will appear as shown in Figure B-46. For this analysis, the **Use Log Transform** option was selected, the **Weibull** plotting position method was selected, the default **Confidence Limits** were selected, and no modification was made to the time window.

🕌 General I	Frequency ·	STAGE ANALYSI	S TEST 7		
Name: Description: Data Set: DSS File Name: Report File:	STAGE ANALYSI: Example 7, Stage CEDAR RAPIDS, C:/Documents an	3 TEST 7 a analysis of Cedar River at STAGE DATA nd Settings/q0hecmjf/My Do ples\GeneralFrequencyRes	t Cedar Rapids, Iowa ocuments/SSP Projects/S	SSP_Examples/SSP_EXAMPLE	
Log Transform	ransform e Log Transform mits (0.05, 0.95)		0.05	Plotting Position Weibull (A and B = 0) Median (A and B = 0.3) Hazen (A and B = 0.5) Other (Specify A, B) Plotting position computed using formula (m-A)/(n+1-A-B) Where: m=rank, 1=largest N=Number of Years A, B=Constants 	
Time Window I DSS Range is start date end date	01JUN1851 - 27		1851 2007	B:	
Compute	Plot Analytica Curve	I Plot Graphical Curve	View Report	Print OK Cancel	Apply

Figure B-46. General Frequency Analysis Editor for Test Example 7.

Shown in Figure B-47 is the General Frequency analysis editor with the **Options Tab** selected. The **Historic Period Data** option has been selected to reflect a historical flood event that produced a peak stage of 31.12 feet in June of 2008. The Historic Period **Start Year** has been left empty. By default this value will be the earliest year found in the historic flood peak data or the systematic record. Therefore for this example, 1851 will automatically be used for the Start Year of the Historic Period. This Historic Period **End Year** has also been left empty. By default this value will be the last year found in the historic flood peak data or the systematic record. Therefore for this example, and the systematic record. Therefore for this example, be used for the last year found in the historic flood peak data or the systematic record. Therefore for this example, 2008 will automatically be used for the End Year of the Historic Period.

Other features on this tab include the **Low Outlier Threshold**, an option to override the default **Frequency Ordinates**, and **Output Labeling**. The changes made to these options include adding the 0.1 percent frequency ordinate and the data name was changed from STAGE-ANNUAL PEAK to Stage.

Appendix B – Example Data Sets

HEC-SSP	User's	Manual
---------	--------	--------

🕌 General F	Frequency -STAGE ANALYS	SIS TEST 7				
Name:	STAGE ANALYSIS TEST 7					
Description:	Example 7, Stage analysis of Cedar River at Cedar Rapids, Iowa					
Data Set:	CEDAR RAPIDS, STAGE DATA					
DSS File Name:	C:/Documents and Settings/g0hecmjf/My	Documents/SSP Projects/SSP_Examples/	SSP EXAMPLE			
Report File:		esults\STAGE_ANALYSIS_TEST_7\STAGE				
General Option:	S Analytical Graphical					
Clow Outlier Thr	· · · · ·	Historic Period Data	User Specified Frequency Ordinates			
🗌 Use Low Ou	utlier Threshold	🗹 Use Historic Data	Use Values from Table below			
Value		Historic Period	Frequency in Percent			
⊂Output Labeling	g	Start Year:	0.1			
Data Name		End Year:	0.5			
DSS data nam	e is STAGE-ANNUAL PEAK	High Threshold:	1.0			
🗹 change la	bel Stage	Listaria Events	5.0			
Data Unit		Historic Events Water Year Peak	20.0			
DSS Data Unit	is FEET	2008 31.12	50.0			
🗌 change la	bel FEET		90.0			
			99.0			
	Plot Analytical Plot Graphical					
Compute	Curve	View Report Service Print	OK Cancel Apply			

Figure B-47. General Frequency Analysis Editor with Options Tab Shown for Test Example 7.

Once all of the General and Optional settings are set or selected, the user can choose to perform an Analytical or Graphical analysis. In this example, an analytical analysis was performed on the peak stage data. Shown in Figure B-48 is the **Settings** tab for the analytical analysis. As shown, the distribution selected for this example is LogPearsonIII. The **Skew** option was set to **Use Station Skew** and the **Do Not Compute Excepted Probability** option was selected.

🕌 General	Frequency -STAGE	ANALYSIS TEST 7				
Name: STAGE ANALYSIS TEST 7 Description: Example 7, Stage analysis of Cedar River at Cedar Rapids, Iowa Data Set: CEDAR RAPIDS, STAGE DATA DSS File Name: C:/Documents and Settings/q0hecmjf/My Documents/SSP Projects/SSP_Examples/SSP_EXAMPLE_, Report File: ects\SSP_Examples\GeneralFrequencyResults\STAGE_ANALYSIS_TEST_7\STAGE_ANALYSIS_TE_, General Options Analytical						
Settings Tabu Log Transform Distribution: LogPearsonII		Generalized Skew Use Station Skew Use Weighted Skew Use Regional Skew Regional Skew: Reg. Skew MSE: Expected Probablity Curve Compute Expected Prot				
Compute	Plot Analytical Plot Curve Cur	Graphical /e View Report	🖨 Print	ок	Cancel	Apply

Figure B-48. General Frequency Analysis Editor with Settings Tab Shown for Test Example 7.

Press the **Compute** button to perform the analysis. Once the computations have been completed, a message window will open stating **Compute Complete.** Close this window and then select the **Tabular Results** tab within the analytical analysis. The tabular results window should look Figure B-49.

Appendix B – Example Data Sets

🕌 General F	reque	ency -STAGE AN	ALYSIS TEST 7					
Name:	STAGE ANALYSIS TEST 7							
Description:	Example 7, Stage analysis of Cedar River at Cedar Rapids, Iowa							
		•						
p	cument	s and Settings/q0hecmjf/N	ly Documents/SSP Proj	ects/SSP_Example	s/SSP_EXAMPLES	.ds:		
Report File:	_Examp	oles\GeneralFrequencyRe	sults\STAGE_ANALYSIS	3_TEST_7\STAGE_	ANALYSIS_TEST_7	r.rpt		
General Options	Analyti	ical Graphical						
Settings Tabula	r Result	s Plot						
Percent Char	nce	Cu	rve based on Data		Curve bas	sed on User-Adjuste	d Statistics	
Exceedance		Computed	Confidence	Limits	Computed	Confider	nce Limits	
		Curve	Stage in F	EET	Curve	Stage	in FEET	
		Stage in FEET	0.95	0.05	Stage in FEET	0.95	0.05	
	0.1	35.0	41.6	30.4				
	0.2	32.0	37.6	28.0 25.0				
	1.0	25.4	29.1	23.0				
	2.0	22.7	25.6	20.5				
	5.0	19.2	21.3	17.6				
	10.0	16.6	18.1	15.3				
	20.0 50.0	13.9 10.0	15.0 10.6	13.0 9.4				
	80.0	7.2	7.7	9.4				
	90.0	6.1	6.6	5.6				
	95.0	5.4	5.8	4.8				
	99.0	4.2	4.7	3.7				
8	System :	Statistics	Numb	per of Events				
Statistic		Value	Event	Numbe	er			
Mean		1.002	Historic Events		1			
Standard Dev		0.168	High Outliers		L(og Transformation:	On	
Station Skew Regional Skew		0.091	Low Outliers Zero Or Missing		0 D	istribution:	LogPearsonIII	
Weighted Skew				106		- II		
Adopted Skew		0.091	Systematic Events Historic Period		158			
Compute	Plot/ Curv	Analytical Plot Grap e Curve	hical View Repo	rt 🖨 Print		OK Can	cel Apply	
Combare	Curv						Abbia	

Figure B-49. General Frequency Editor with Tabular Results Tab Selected for Test Example 7.

As shown in Figure B-49, the Frequency Curve table contains the following results:

Percent Chance Exceedance

Computed Curve (Log-Pearson III results)

Confidence Limits (5% and 95% chance exceedance curves)

The frequency curve table contains results based on the data, systematic and historic, and results based on user-adjusted statistics. In this example no user-adjusted statistics were defined, therefore these columns are empty. On the bottom left-hand side of the results tab is a table of System Statistics for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom righthand side of the results tab is a table of Number of Events showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (if historic data was entered).

This example reports one historical flood event, and a historical period of 158 years, between 1851 and 2008. The reported statistics reflect the use of the historical data adjustment outlined in Bulletin 17B, Appendix 6. The report file (described below) shows the initial computation of the statistics and frequency curve before the historical data was used, and the resulting statistics and frequency curve after the historical data is taken into account.

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Analytical Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-50.

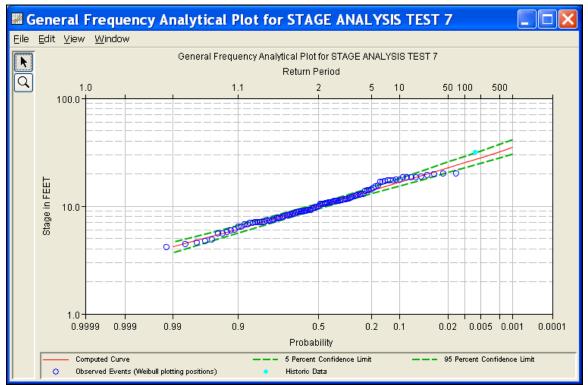


Figure B-50. Plot of the Frequency Curve Results for Test Example 7.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring

up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-51 is the report file for Test Example 7.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

		EST_7.rpt				×
<u>Eile E</u> dit <u>S</u> earch	F <u>o</u> rmat					
File: hts\SSP Proje	cts\SSP_Exampl	es\GeneralFreque	encyResults\STAGE_	_ANALYSIS_1	rest_7\stage_a	NALYSIS_TEST_7.rpt
25 Jul 1999 15 Jul 2000 17 Apr 2001 05 Jun 2002 16 May 2003 27 May 2004 03 Jul 2005 08 Apr 2006 27 Aug 2007 	11.1800 14.0400 7.0200 8.8200 18.3000 10.4300 8.1000 11.0600	99 1 100 1 101 1 102 1 103 1 104 1 105 1 106 1	988 5.9200 1955 5.6700 1934 5.5500 1940 4.8600 1956 4.6900 1958 4.5800 1958 4.5800 1954 4.4300 1931 4.1000	92.52 93.46 94.39 95.33 96.26 97.20 98.13 99.07	 	
Mean-square er Content << Frequency C CEDAR RAPIDS,	'urve >>	hal skew is und	defined.			
I Computed	Fynegted	Bergent	Confidence	limite	-	
	Probability FEET		Confidence 0.95 Stage, F	0.05 EET	i	
Curve Stage, 	Probability FEET Statistics >>	Chance Exceedance 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 80.0 90.0 95.0 99.0	0.95 Stage, F	0.05 EET 27.8953 25.9637 23.4306 21.5198 19.6010 17.0205 14.9924 12.8235 9.3882 6.7241 5.6088 4.8176 3.6087	- - - - - - - - - - - - - - - - - - -	
Curve Stage, 	Probability FEET Statistics >>	Chance Exceedance 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 80.0 90.0 95.0 99.0	0.95 Stage, F 37.4074 34.2504 27.2316 24.3192 20.5340 17.6829 14.7825 10.6039 7.7507 6.6168 5.8159 4.5753	0.05 EET 27.8953 25.9637 23.4306 21.5198 19.6010 17.0205 14.9924 12.8235 9.3882 6.7241 5.6088 4.8176 3.6087	- - - - - - - - - - - - - - - - - - -	

Figure B-51. Report File for Test Example 7.

Example 8: Using User-Adjusted Statistics

This example demonstrates how to use the General Frequency analysis and enter user-adjusted statistics. The data for this example is from an analysis that computed local runoff for the Rio Grande at Albuquerque. The data includes unregulated daily average flows generated by rainfall-runoff from areas downstream of upstream reservoirs. The period of record used for this example is from 1944 to 2000. To view the data, right-click on the data record labeled "Annual Daily Average Peak Flows Local Runoff at Albuquerque" in the study explorer and then select Tabulate. The data will appear as shown in Figure B-52.

//LOCAL_INFL	OWS_ALBUQUER	QUE/F 🔳 🗖	×
<u>E</u> ile <u>E</u> dit <u>V</u> iew			
		LOCAL INFLOWS ALB	
Ordinate	Date / Time	FLOW	
		CALC	
Units		CFS	~
Туре		PER-AVER	
1	19 Aug 1944, 24:00	1,175.0	
2	21 May 1945, 24:00	1,297.0	
3	21 Aug 1946, 24:00	978.0	
4	16 Aug 1947, 24:00	741.0	
5	20 Jun 1948, 24:00	2,313.0	
6	04 Aug 1949, 24:00	1,891.0	
7	02 Aug 1950, 24:00	1,790.0	
8	01 Aug 1951, 24:00	1,499.0	
9	12 Aug 1952, 24:00	2,061.0	
10	18 Jul 1953, 24:00	1,430.0	
11	23 May 1954, 24:00	980.0	
12	25 Sep 1955, 24:00	4,790.0	
13	20 Jul 1956, 24:00	1,040.0	
14	20 Oct 1957, 24:00	3,613.0	
15	30 May 1958, 24:00	4,358.0	
16	24 May 1959, 24:00	542.0	
17	11 Jun 1960, 24:00	913.0	
18	23 Aug 1961, 24:00	861.0	
19	09 Jul 1962, 24:00	927.0	
20	30 Aug 1963, 24:00	505.0	
21	06 Jun 1964, 24:00	361.0	
22	19 Jun 1965, 24:00	1,677.0	
23	02 Aug 1966, 24:00	1,487.0	
24	10 Aug 1967, 24:00	4,186.0	*

Figure B-52. Tabulation of the Peak Stage Data for Example 8.

To plot the data for this example, right-click on the data record and then select **Plot**. A plot of the data will appear as shown in Figure B-53.

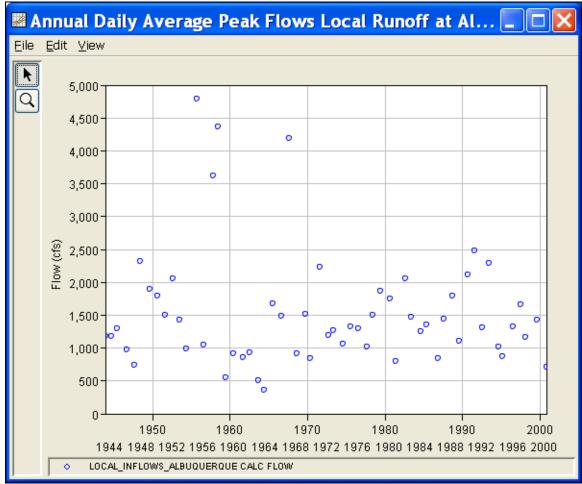


Figure B-53. Plot of Data for Example 8.

A General Frequency analysis has been developed for this example. To open the General Frequency analysis editor for Test Example 8, either double-click on the analysis labeled **LOCAL RUNOFF AT ALBUQUERQUE TEST 8** from the study explorer, or from the **Analysis** menu select open, then select **LOCAL RUNOFF AT ALBUQUERQUE TEST 8** from the list of available analyses. When test 8 is opened, the General Frequency analysis editor will appear as shown in Figure B-54.

Appendix B – Example Data Sets

HEC-SSP User's Manual

General Frequency -LOCAL RUNOFF AT ALBUQU	ERQUE TEST 8						
Name: LOCAL RUNOFF AT ALBUQUERQUE TEST 8							
Description: This examples shows how to enter user adjusted statistics	This examples shows how to enter user adjusted statistics						
Data Set. Annual Daily Average Peak Flows Local Runoff at Albuquerque	Annual Daily Average Peak Flows Local Runoff at Albuquerque						
DSS File Name: C:/Documents and Settings/q0hecmjf/Desktop/SSP_Examples	/SSP_EXAMPLES.dss						
Report File: JCAL_RUNOFF_AT_ALBUQUERQUE_TEST_8LOCAL_RUNOFF_AT_ALBUQUERQUE_TEST_8.rpf							
General Options Analytical Graphical							
CLog Transform	Plotting Position						
⊙ Use Log Transform	• Weibull (A and B = 0)						
O Do not use Log Transform	O Median (A and B = 0.3)						
Confidence Limits	O Hazen (A and B = 0.5)						
	Other (Specify A, B)						
⊙ Defaults (0.05, 0.95) ○ User Entered Values	Plotting position computed using formula						
	(m-A)/(n+1-A-B) Where:						
Upper Limit: 0.05	m=rank, 1=largest N=Number of Years						
Lower Limit: 0.95	A,B=Constants						
⊂Time Window Modification	- A:						
	B;						
DSS Range is 19AUG1944 - 24OCT2000							
end date 2000 [
Compute Plot Analytical Plot Graphical Curve View Report	Print OK Cancel Apply						

Figure B-54. General Frequency Analysis Editor for Test Example 8.

Shown in Figure B-53 are the general settings that were used to perform this frequency analysis. For this analysis, the **Use Log Transform** option was selected, the **Weibull** plotting position method was selected, the default **Confidence Limits** were selected, and no modification was made to the **Time Window**.

Shown in Figure B-55 is the General Frequency analysis editor with the **Options Tab** selected. Features on this tab include the **Low Outlier Threshold**, an option to use **Historic Data**, an option to override the default **Frequency Ordinates**, and **Output Labeling**. All defaults settings were selected for this example.

HEC-SSP User's Manual

🕌 General I	Frequency -LOCAL R	UNOFF AT ALBUQUERQUE TEST 8*	
Name:	LOCAL RUNOFF AT ALBUQUEF	RQUE TEST 8	
Description:	This examples shows how to er	ter user adjusted statistics	วี
Data Set:	Annual Daily Average Peak Flow	rs Local Runoff at Albuquerque 🛛 🗸	1
DSS File Name:	ocuments and Settings/q0hecm	(///www.comments/SSP Projects/SSP_Examples/SSP_EXAMPLES.ds:	<u>ן</u>
Report File:	CAL_RUNOFF_AT_ALBUQUEF	QUE_TEST_8LOCAL_RUNOFF_AT_ALBUQUERQUE_TEST_8.rpt	
General Option	S Analytical Graphical		-
CLow Outlier Th	reshold	Historic Period Data	Frequency Ordinates
Use Low O	utlier Threshold	Use Historic Data	from Table below
Value		Historic Period Frequency in F	
		Start Year:	0.2
Output Labelin	ig		0.5
Data Name DSS data nam	ne is ELOVA(2.0
		High Threshold:	5.0 10.0
📃 change la		Historic Events	20.0
Data Unit		Water Year Peak	50.0 80.0
DSS Data Unit	tis CFS		90.0
🗌 change la	abel		95.0
	Plot Analytical Plot Gr	aphical	
Compute	Curve	View Report SPrint OK	Cancel Apply

Figure B-55. General Frequency Analysis Editor with Options Tab Shown for Test Example 8.

Once all of the General and Optional settings are set or selected, the user can choose to perform an Analytical or Graphical analysis. In this example, an analytical analysis was performed. Shown in Figure B-56 is the **Settings** tab for the analytical analysis. As shown, the distribution selected for this example is LogPearsonIII. The **Skew** option was set to **Use Station Skew** and the **Do Not Compute Excepted Probability** option was selected.

HEC-SSP User's Manual

🛓 General Frequency -LOCAL	RUNOFF AT ALBUQUERQUE TEST 8*									
Name: LOCAL RUNOFF AT ALBUQU	ERQUE TEST 8									
Description: This examples shows how to	enter user adjusted statistics									
Data Set: Annual Daily Average Peak Fl	ata Set: Annual Daily Average Peak Flows Local Runoff at Albuquerque									
DSS File Name: jcuments and Settings/q0hec	mjf/My Documents/SSP Projects/SSP_Examples/SSP_EXAMPLES.ds:									
Report File: CAL_RUNOFF_AT_ALBUQU	CAL_RUNOFF_AT_ALBUQUERQUE_TEST_81LOCAL_RUNOFF_AT_ALBUQUERQUE_TEST_8.mpl									
General Options Analytical Graphical										
Settings Tabular Results Plot										
Log Transformation: On	Generalized Skew									
Distribution:	O Use Station Skew									
LogPearsonIII	O Use Weighted Skew									
	O Use Regional Skew									
	Regional Skew:									
	Reg. Skew MSE:									
	Expected Probability Curve									
	O Compute Expected Prob. Curve									
	⊙ Do Not Compute Expected Prob. Curve									
Plot Analytical Plot Compute Curve Curv	Graphical View Report Sprint OK Cancel Apply									

Figure B-56. General Frequency Analysis Editor with Settings Tab Shown for Test Example 8.

Press the **Compute** button to perform the analysis. Once the computations have been completed, a message window will open stating **Compute Complete.** Close this window and then select the **Plot** tab within the analytical analysis. The analytical plot window should look Figure B-57.

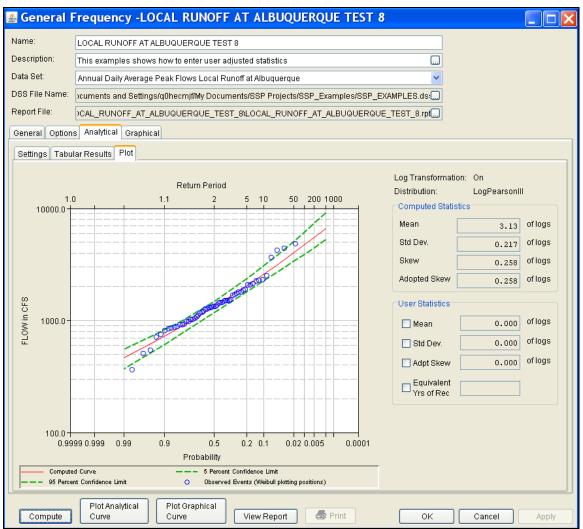


Figure B-57. The Plot Tab for Test Example 8.

As shown in Figure B-57, the **Plot** tab contains a graph of the systematic data, the computed frequency curve, and the confidence limits. The right side of the plot tab contains a table of **Computed Statistics** and **User Statistics**. The user has the option to enter a mean, standard deviation, adopted skew, and equivalent years of record in the User Statistics table. The **Compute** button must be pressed after User Statistics have been entered in order for the program to compute a frequency curve using the user statistics.

As mentioned at the beginning of this example, the annual peak flows were based on daily averaged flows. In order to compute an instantaneous peak flow frequency curve, a relationship between daily averaged flows and the corresponding instantaneous peak flows was developed. This was done by plotting daily averaged flow and the corresponding instantaneous peak flow for selected flood events. Using this relationship, a Mean of 3.731 was computed and entered in the User Statistics table and the analytical analysis was recomputed. Figure B-58 shows that the frequency curve computed from the useradjusted statistics is added to the graph. Figure B-58 also shows that the user does not have to enter values for all statistics in order for the program to compute a user-adjusted frequency curve. The program will use statistics computed from the systematic and historic data if the statistics are not defined in the User Statistics table. In this example, the program used the computed statistics for standard deviation, adopted skew, equivalent years of record and the user-defined mean of 3.731 when computing the user-adjusted frequency curve.

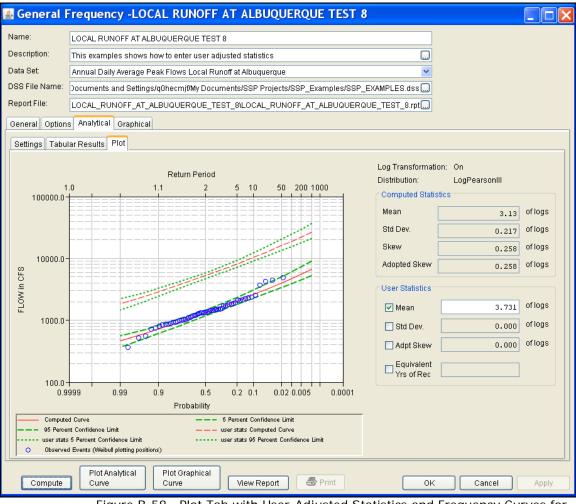


Figure B-58. Plot Tab with User-Adjusted Statistics and Frequency Curves for Test Example 8.

Select the **Tabular Results** tab to see information for both the computed and user-adjusted frequency curves. As shown in Figure B-59, the Frequency Curve table contains the percent chance exceedance, computed curves (Log-Pearson III results), and the Confidence Limits (5% and 95% chance exceedance curves) for both the computed and user-adjusted statistics.

On the bottom left-hand side of the results tab is a table of System Statistics for the observed station data (mean, standard deviation, station skew) and regional adjustment (regional skew, weighted skew, and adopted skew). Also on the bottom right-hand side of the results tab is a table of Number of Events showing the number of historic events used in the analysis, number of high outliers found, number of low outliers, number of zero or missing data years, number of systematic events in the gage record, and the historic record length (if historic data was entered).

lame: L	LOCAL RUNOFF AT ALBUQUERQUE TEST 8									
escription:	This eva	mnles show	ws how to ente	r user adjusted statistic	e					
	Annual Daily Average Peak Flows Local Runoff at Albuquerque									
						-				
eport File: 🧃	CAL_RI	JNOFF_AT_	ALBUQUERQ	UE_TEST_8\LOCAL_RU	JNOFF_AT_ALBUG	UERQUE_TEST_8.rp1				
eneral Options	Analyti	ical Graphi	ical							
Settings Tabular	r Result	s Plot								
Percent Chan	ice _		Cu	rve based on Data		Curve based	on User-Adjusted St	tatistics		
Exceedance	9		puted Irve	Confidence FLOW in (Computed Curve	Confidence Limits FLOW in CFS			
		FLOW	in CFS	0.95	0.05	FLOW in CFS	0.95	0.05		
	0.2		6,673.4	9,163.0	5,260.5	26,613.6	36,541.9	20,978.9		
	0.5		5,530.7	7,356.2	4,459.0	22,056.3	29,336.3	17,782.3		
	1.0	4,751.8		6,162.8	3,899.3	18,950.0	24,577.3	15,550.5		
	2.0		4,038.7	5,101.9	3,375.4	16,106.4	20,346.5	13,460.9		
	5.0		3,184.9	3,878.4	2,728.9	12,701.3	15,467.1	10,883.0		
	10.0	2,595.4 2.041.7		3,070.1	2,266.3	10,350.3	12,243.4	<u> </u>		
	50.0	1,321.1		2,345.8	1,813.8 1,182.3	8,142.2 5,268.4	9,355.0 5,880.7	4,714.8		
	80.0	881.2		992.6	765.9	3,514.2	3,958.6	3,054.5		
	90.0		721.6	824.5	612.2	2,877.6	3,288.0	2,441.6		
	95.0		615.5	713.2	510.9	2,454.6	2,844.4	2,037.4		
	99.0		463.3	552.8	368.3	1,847.8	2,204.4	1,468.9		
	Suctam (Statistics	1	Numh	er of Events					
Statistic	.,		alue	Event	Numbe	r				
Mean			3.130	Historic Events		0				
Standard Dev			0.217	High Outliers		0	wan aformation . Or			
Station Skew 0.258		Low Outliers			Transformation: On					
Regional Skew				Zero Or Missing		0 Distri	bution: Log	gPearsonIII		
Weighted Skew				Systematic Events		57				
Adopted Skew			0.258	Historic Period						
		Analytical	Plot Grap							

Figure B-59. General Frequency Editor with Results Tab Selected for Test Example 8.

In addition to the tabular results, a graphical plot of the computed frequency curves can be obtained by pressing the **Plot Analytical Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-60.

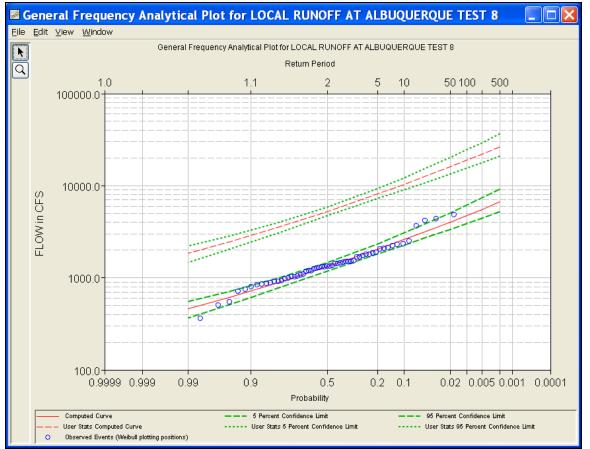


Figure B-60. Plot of the Frequency Curve Results for Test Example 8.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-61 is the report file for Test Example 8.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of

information will show up in the report file depending on the data and the options that have been selected for the analysis.

ICCAL_RUNOFF_AT_ALBUQUERQUE_TEST_8.rpt
Eile Edit Search Format
File: FrequencyResults\LOCAL_RUNOFF_AT_ALBUQUERQUE_TEST_8\LOCAL_RUNOFF_AT_ALBUQUERQUE_TEST_8.rpt
General Frequency Analysis 25 Jun 2008 01:04 PM
Input Data
Analysis Name: LOCAL RUNOFF AT ALBUQUERQUE TEST 8 Description: This examples shows how to enter user adjusted statistics
Data Set Name: Annual Daily Average Peak Flows Local Runoff at Albuquerque DSS File Name: C:/Documents and Settings/qOhecmjf/My Documents/SSP Projects/SSP_Examples/SSP_E DSS Pathname: //LOCAL_INFLOWS_ALBUQUERQUE/FLOW/OIJAN1900/IR-CENTURY/CALC/
Start Date:
Project Path: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\G Result File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\G
Plotting Position Type: Weibull
Probability Distribution Type: Pearson Type III Use Log Transform
Upper Confidence Level: 0.05 Lower Confidence Level: 0.95
Skew Option: Use Station Skew Regional Skew: Regional Skew MSE:
Use User-Supplied Statistics User Mean: 3.731 Use Sample Std.Dev. for User Std.Dev. Use Adopted Skew for User Skew Use Sample Size for User Number of Years
Display ordinate values using 0 digits in fraction part of value
End of Input Data
 << Low Outlier Test >>
Based on 57 events, 10 percent outlier test value K(N) = 2.818
0 low outlier(s) identified below test value of 329.21
 << High Outlier Test >>
Based on 57 events, 10 percent outlier test value K(N) = 2.818
1:1.1:1 1:1

Figure B-61. Report File for Test Example 8.

Example 9: General Frequency – Graphical Analysis

This example demonstrates how to create a Graphical Analysis within a General Frequency analysis. The data for this example is from an analysis that computed regulated flow for the Rio Grande at Albuquerque. The data includes regulated daily average flows from upstream reservoirs routed downstream to Albuquerque. The period of record used for this example is from 1974 to 2002. To view the data, right-click on the data record labeled "Annual Daily Average Peak Flows Rio Grande at Albuquerque" in the study explorer and then select Tabulate. The data will appear as shown in Figure B-62.

🔺 //RIO GRANDE AT ALBUQUERQUE, NM/... 💶 🗖 🔀

<u>E</u> ile <u>E</u> dit ⊻iev	N			
Ordinate	Date	Time	RIO GRANDE AT A FLOW REGULATED VOL	
Units			CFS	~
Туре			INST-VAL	
1	01 Jan 1974	24:00	1,950.000	
2	24 May 1975	24:00	5,800.000	
3	21 May 1976	24:00	3,170.000	
4	18 Aug 1977	24:00	1,640.000	
5	24 May 1978	24:00	4,320.000	
6	01 Jun 1979	24:00	7,870.000	
7	28 May 1980	24:00	7,130.000	
8	05 May 1981	24:00	2,170.000	
9	09 Jun 1982	24:00	4,630.000	
10	12 Jun 1983	24:00	7,330.000	
11	27 May 1984	24:00	8,500.000	
12	24 Apr 1985	24:00	8,650.000	Ξ
13	07 Aug 1986	24:00	4,670.000	
14	22 Jul 1987	24:00	6,120.000	
15	01 Apr 1988	24:00	3,880.000	
16	27 Apr 1989	24:00	3,710.000	
17	12 May 1990	24:00	2,420.000	
18	07 Aug 1991	24:00	4,800.000	
19	12 May 1992	24:00	5,900.000	
20	05 Jun 1993	24:00	7,000.000	
21	12 May 1994	24:00	6,250.000	
22	25 May 1995	24:00	6,370.000	
23	22 Feb 1996	24:00	1,770.000	
24	11 Jun 1997	24:00	5,980.000	_
25	09 May 1998	24:00	3,940.000	
26	01 Jun 1999	24:00	4,550.000	
27	03.lun 2000	24.00	1 500 000	

Figure B-62. Tabulation of the Peak Stage Data for Example 9.

To plot the data for this example, right-click on the data record and then select **Plot**. A plot of the data will appear as shown in Figure B-63.

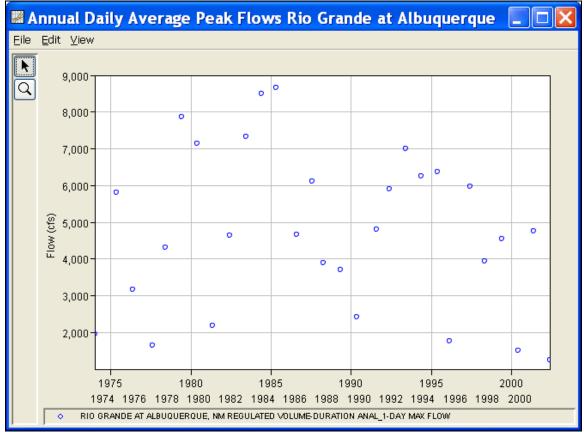


Figure B-63. Plot of Data for Example 9.

A General Frequency analysis has been developed for this example. To open the General Frequency analysis editor for test example 9, either double-click on the analysis labeled **REGULATED FLOW RIO GRANDE TEST 9** from the study explorer, or from the **Analysis** menu select open, then select **REGULATED FLOW RIO GRANDE TEST 9** from the list of available analyses. When Test 9 is opened, the General Frequency analysis editor will appear as shown in Figure B-64.

🕌 General I	Frequency	-REGULATED FLOW RIO GRANDE TEST 9	
Name:	REGULATED FL	LOW RIO GRANDE TEST 9	
Description:	Example using a	a graphical general frequency analysis	
Data Set:	Annual Daily Ave	erage Peak Flows Rio Grande at Albuquerque	
DSS File Name:	C:/Documents a	and Settings/q0hecmjt/Desktop/SSP_Examples/SSP_EXAMPLES.dss	
Report File:	Ilts\REGULATED	D_FLOW_RIO_GRANDE_TEST_91REGULATED_FLOW_RIO_GRANDE_TEST_9.rpt	
General Option	s Analytical Gra	aphical	
Log Transform		Plotting Position	
💿 Use Log T	ransform	⊙ Weibull (A and B = 0)	
🔿 Do not use	e Log Transform	O Median (A and B = 0.3)	
Confidence Lin	nite	◯ Hazen (A and B = 0.5)	
		Other (Specify A, B)	
⊙ Defaults (⊂ ◯ User Enti		Plotting position computed using formula	
	cieu values	(m-A)/(n+1-A-B) Where:	
Upper Limit:		0.05 m=rank, 1=largest N=Number of Years	
Lower Limit:		0.95 A,B=Constants	
Time Window 1	Modification	A:	
		B;	
DSS Range is	01JAN1974 - 15	1974	
		2002	
end date		2002	
Compute	Plot Analytica Curve	al Plot Graphical Curve View Report Sprint OK Cancel	Apply

Figure B-64. General Frequency Analysis Editor for Test Example 9.

Shown in Figure B-64 are the general settings that were used to perform this frequency analysis. For this analysis, the **Use Log Transform** option was selected, the **Weibull** plotting position method was selected, the default **Confidence Limits** were selected, and no modification was made to the **Time Window**.

Shown in Figure B-65 is the General Frequency analysis editor with the **Options Tab** selected. Features on this tab include the **Low Outlier Threshold**, an option to use **Historic Data**, an option to override the default **Frequency Ordinates**, and **Output Labeling**. All defaults settings were selected for this example.

🕌 General F	requency -REGULAT	ED FLOW RIO GRANDE TEST 9	
Name: Description: Data Set: DSS File Name: Report File: General Options Low Outlier Thr Use Low Ou Value Output Labeling Data Name DSS data nam	REGULATED FLOW RIO GRANE Example using a graphical gene Annual Daily Average Peak Flow reuments and Settings/q0hecmj lits\REGULATED_FLOW_RIO_G Analytical Graphical eshold utlier Threshold	DE TEST 9 eral frequency analysis	n Table below ent 0.2 0.5 1.0 2.0 5.0 10.0
Data Name	e is FLOW bel	End Year: 0	0.5 1.0 2.0 5.0
Compute	Plot Analytical Curve Curve	aphical View Report S Print OK	Cancel Apply

Figure B-65. General Frequency Analysis Editor with Options Tab Shown for Test Example 9.

Once all of the General and Optional settings are set or selected, the user can choose to perform an Analytical or Graphical analysis. In this example, a graphical analysis was performed. Shown in Figure B-66 is the Graphical analysis tab. As shown, a graph containing the systematic data and graphical curve is on the left side and a table containing the user-entered frequency curve is on the right side of the window. The user must manually enter a peak value for each frequency ordinate and then press the **Compute** button before the program plots the graphical curve. For this example, a reservoir model was used to route synthetic hydrographs through the reservoir network upstream of Albuquerque using current operating criteria. This was done for the 0.2, 0.5, 1.0, 2.0, 10, 20, and 50 percent events. Output from the model was input into the Frequency Ordinates table. For the more frequent events (10 year and below), the graphical curve was fit to the data visually. This example shows how a reservoir network can influence the frequency curve. Notice

how the frequency curve is flat for the 20 through the 1 percent chance events. The reservoir network is able to control flooding in this range. This example also shows that as flood events become larger, the reservoir network has less influence on controlling downstream flooding.

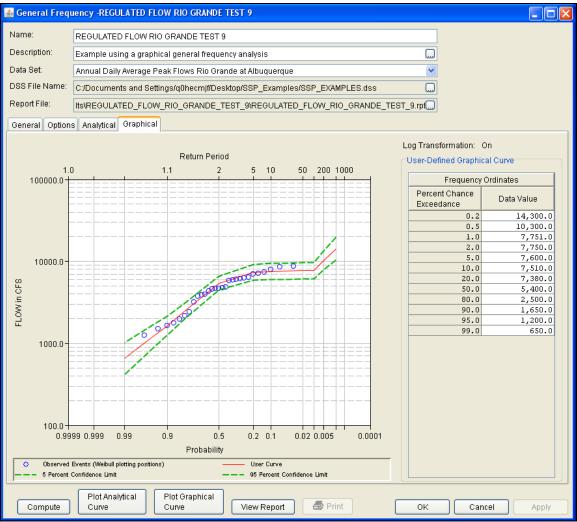


Figure B-66. Graphical Tab Shown for Test Example 9.

A graphical plot of the graphical frequency curve can be obtained by pressing the **Plot Graphical Curve** button at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-67.

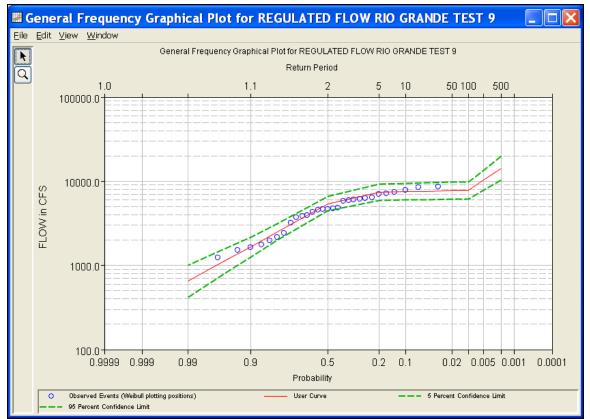


Figure B-67. Plot of the Frequency Curve Results for Test Example 9.

The graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-68 is the report file for Test Example 9.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, and additional calculations needed. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

REGULATED_FLOW_RIO_GRANDE_TEST_9.rpt	×
Eile Edit Search Format	
File: neralFrequencyResults\REGULATED_FLOW_RIO_GRANDE_TEST_9\REGULATED_FLOW_RIO_GRANDE_TEST_9).rpt
General Frequency Analysis 25 Jun 2008 02:20 PM	^
Input Data	
Analysis Name: REGULATED FLOW RIO GRANDE TEST 9 Description:	
Data Set Name: Annual Daily Average Peak Flows Rio Grande at Albuquerque DSS File Name: C:/Documents and Settings/qOhecmjf/My Documents/SSP Projects/SSP_Examples/SSP_I DSS Pathname: //RIO GRANDE AT ALBUQUERQUE, NM/FLOW/OIJAN1900/IR-CENTURY/REGULATED VOLUME-DURAC	Ш
Start Date: End Date:	
Project Path: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Ge Result File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\Ge	
Plotting Position Type: Weibull	
Probability Distribution Type: None Use Log Transform	
Display ordinate values using 0 digits in fraction part of value	
End of Input Data	
Based on 29 events, 10 percent outlier test value $K(N) = 2.549$	
0 low outlier(s) identified below test value of 1,004.42	
Based on 29 events, 10 percent outlier test value $K(N) = 2.549$	
0 high outlier(s) identified above test value of 17,378.83	
Final Results	
<< Plotting Positions >> Annual Daily Average Peak Flows Rio Grande at Albuquerque	
Events Analyzed Ordered Events FLOW Water FLOW Weibull	~
1:1.1:1 1:1	

Figure B-68. Report File for Test Example 9.

Example 10: Volume-Duration Frequency Analysis, Maximum Flows

This example demonstrates how to perform a Volume-Duration Frequency analysis for maximum flows. The data for this example was derived from an analysis where a time-series of daily average unregulated flows were computed for the Rio Grande at Albuquerque. The period of record for this example is from 1941 to 2002. To view the data, right-click on the data record labeled "**Rio Grande at Albuquerque UNREGULATED**" in the study explorer and then select **Plot**. The data will appear as shown in Figure B-69.

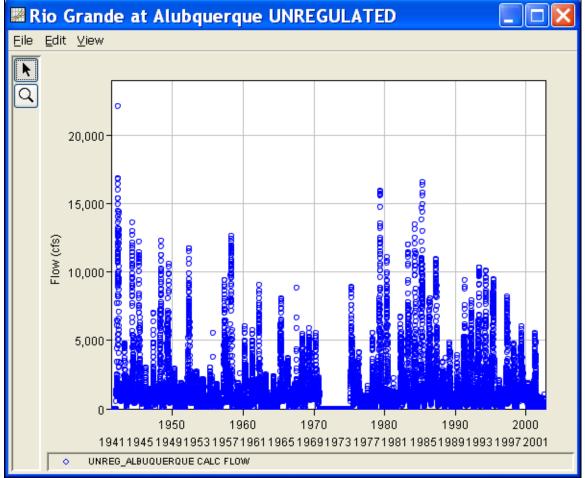


Figure B-69. Plot of Daily Average Flow for Example 10.

A Volume-Duration Frequency analysis has been developed for this example. To open the Volume-Duration Frequency analysis editor for test example 10, either double-click on the analysis labeled **RIO GRANDE AT ALBUQUERQUE UNREGULATED FLOW TEST 10** from the study explorer, or from the **Analysis** menu select open, then select **RIO GRANDE AT ALBUQUERQUE UNREGULATED FLOW** **TEST 10** from the list of available analyses. When test 10 is opened, the Volume-Duration Frequency analysis editor will appear as shown in Figure B-70.

📓 Volume-Durat	tion Frequency -RIO GRANDE AT ALBUQ	JERQUE UNREGULATED FLOW TEST 10		
Name: Description: Data Set: DSS File Name: Report File: General Option	S Duration Table Analytical Graphical	Grande at Albuquerque D	CTime Window Modification	
Maximum or Mi Analyze Ma Analyze Mi Year Specificat O Water Year	e Log Transform inimum Analysis aximums nimums tion r (starts Oct 1) Year (starts Jan 1) 01Jan	 Weibull (A and B = 0) Median (A and B = 0.3) Hazen (A and B = 0.5) Other (Specify A, B) Plotting position computed using formula (m-A)/(n+1-A-B) Where: m=rank, 1=largest N=Number of Years A, B=Constants A: B 	end date Season To define a subset of the year season start: season end:	
Compute	Plot Duration Data Curve	Plot Graphical Curve View Report	Print OK Cancel Apply	ly

Figure B-70. Volume-Duration Frequency Analysis Editor for Test Example 10.

Shown in Figure B-70 are the general settings that were used to perform this frequency analysis. For this analysis, the **Use Log Transform** option was selected, the **Weibull** plotting position method was selected, **Analyze Maximums** was selected, the **Calendar Year** option was selected, and no modification was made to the **Time Window**.

Shown in Figure B-71 is the Volume-Duration Frequency analysis editor with the **Options Tab** selected. Features on this tab include an option to override the default **Flow-duration** values, an option to override the default **Frequency Ordinates**, and **Output Labeling**. Both the flow-duration and frequency ordinate tables were modified.

HEC-SSP User's Manual

Aŗ	pendix	В-	Examp	ble	Data	Sets
----	--------	----	-------	-----	------	------

📈 Volume-Durat	ion Frequency -RIO GRANDE AT ALBUQU	JERQUE UNREGULATED FLOW TEST 10*				
Name: Description: Data Set: DSS File Name:	RIO GRANDE AT ALBUQUERQUE UNREG Unregulated Volume-Duration Analysis Rio Rio Grande at Alubquerque UNREGULATE C:Temp\SSP_Examples\SSP_EXAMPLES.	Grande at Albuquerque D				
Report File:	UE_UNREGULATED_FLOW_TEST_10\RIG	GRANDE_AT_ALBUQUERQUE_UNREGULATED_FLOW_1	EST_10.rpl			
General Option	Duration Table Analytical Graphical					
Flow Durations		User Specified Frequency Ordinates	Historic Period Da	ata		
🗹 Change or	add to default values	Use Values from Table below	🔲 Use Historic	Data		
Duration in d	ays 1 7 15 60 120	Frequency in Percent 0.1 0.2 0.5 1.0 2.0 5.0	Historic Period Start Year: End Year: Duration 1-day		High Thresh	old
		10.0 20.0 50.0	7-day 15-day 60-day 120-day			
Output Labelin]	Low Outlier Threshold	Historic Events			
Data Name DSS data nam change la Data Unit DSS Data Unit change la	bel FLOW	Use Low Outlier Threshold Duration Low Threshold 1-day	Year	1-day	7-day	15-day
Compute	Plot Duration Plot Analytical Data Curve	Plot Graphical Curve View Report SPrint	(ОK	Cancel	Apply

Figure B-71. Options Tab Shown for Test Example 10.

Once all of the General and Optional settings are set or selected, the user can extract the volume-duration data from the time-series of daily flows. Select the **Duration Data** tab and press the **Extract Volume-Duration Data** button at the bottom of the table. The table should then fill with the flow-duration values, as shown in Figure B-72.

HEC-SSP User's Manual

Name:	RIO GRAN	IDE AT ALBU	QUERQUE UN								
Description:	Unregulat	ed Volume-Di	uration Analysi	s Rio Grande	at Albuquerq	ue					
Data Set:			que UNREGU						~		
DSS File Nam											
	o. Citrempte	SP_Example	s\SSP_EXAMP	LES.dss							
Report File:	UE_UNRE	EGULATED_F	LOW_TEST_1	0\RIO_GRAN	IDE_AT_ALBU	JQUERQUE_U	UNREGULATE	D_FLOW_TE	ST_10.rp1		
General Opti	ions Duration	Table Anal	ytical Graphic	al							
					Volume-Du	ration Data				[
			Hig	hest Mean Va	lue for Duratio	n, Average Da	ily FLOW in Cl	s			
Year	1		7		1	5	60	I	12	0	
Í	Date	FLOW	Date	FLOW	Date	FLOW	Date	FLOW	Date	FLOW	
1942		22076.4	05/15/1942	15345.8		13098.6		12137.3	07/06/1942	7930.9	
1943		4733.9	05/02/1943	4638.1	05/08/1943	4440.3		2574.3		1849.8	
1944		13601.6	05/22/1944	12334.9		11501.7	07/05/1944	7056.9		4460.3	
1945		12140.6		11199.2		10358.1		6137.1		3794.1	
1946		2998.8		2733.6		2273.0		1230.4		978.5	
1947		7003.5		5848.5			06/15/1947	2709.0		1789.8	
1948		12273.5		10224.5			06/18/1948	7014.3		4567.1	
1949					06/30/1949		06/30/1949	5828.4		4386.0	
1950					04/30/1950		05/04/1950	1549.3		1319.9	
1951		1881.6		1718.3		1610.7		1082.0		868.6	
1952		11669.4		10749.8			06/22/1952	7147.2		4704.7	
1953			06/04/1953		06/06/1953		06/20/1953	1729.2		1298.6	
1954	05/18/1954	2122.1		2050.3		1929.1	06/04/1954	1595.2	06/07/1954	1131.6	
1955		5496.6			05/30/1955		06/21/1955	1559.2		1154.8	
1956		1766.1		1722.1			06/11/1956	1172.4		941.9	
1957		9403.5			06/15/1957	7865.2		5357.9		4360.3	
1958		12590.1			05/23/1958		06/14/1958	9129.4		5433.5	
1959		2539.4		1821.9			06/05/1959	1049.9		844.6	
1960		6034.5 5695.4			04/24/1960		05/22/1960	3299.1 3084.0	06/27/1960	2482.6	
1961 1962		9023.2		5052.7 8121.7	05/07/1961 05/02/1962		06/06/1961 05/28/1962	3084.0 4879.4		3108.6	
	04/15/1962		04/27/1962		05/02/1962		05/15/1962	4879.4		1115.2	
1903	04/10/1003	2477.4	04/10/1903	2208.0	6	2097.4		1014.7	50/04/1903	1113.2	
	Plo		Plot Analy		lot Graphical		an allorn Drata				

Figure B-72. Volume-Duration Data Table for Test Example 10.

Once the data has been extracted, the user must choose to perform an Analytical or Graphical analysis. In this example, an analytical analysis was performed. Shown in Figure B-73 is the **Settings** tab for the analytical analysis. As shown, the distribution selected for this example is LogPearsonIII. The **Skew** option was set to **Use Station Skew** and the **Do Not Compute Excepted Probability** option was selected.

🛓 Volume-D	Duration Frequency -RIO	GRANDE AT ALBUQUERQUE UN	IREGULATED FLOW 🔲 🗖 🔀
Name:	RIO GRANDE AT ALBUQUERQUE UNF	EGULATED FLOW TEST 10	
Description:	Unregulated Volume-Duration Analysis	Rio Grande at Albuquerque	
Data Set:	Rio Grande at Alubquerque UNREGUL	ATED	~
DSS File Name:	:\Documents and Settings\q0hecmjf\My	Documents\SSP Projects\SSP_Examples\SSP_E	XAMPLES.
Report File:	ULATED_FLOW_TEST_10\RIO_GRAN	DE_AT_ALBUQUERQUE_UNREGULATED_FLOW	V_TEST_1
General Option	s Duration Table Analytical Graphica	<u>]</u>	
Settings Tabu	lar Results Plot Statistics		
Log Transform	ation: On	Skew	
Distribution:		 Use Station Skew 	
LogPearsonIII	×		
Expected Prol		O Use Weighted Skew	
🔿 Compute	Expected Prob. Curve	O Use Regional Skew	
	ompute Expected Prob. Curve	Duration Reg. Skew	R.Skew MSE
		7	
		60	
		120	
]][]]
	Plot Plot Plot Duration Analytical Grag	phical	
Compute	Data Curve Curv	e View Report 🖨 Print	OK Cancel Apply

Figure B-73. Settings Tab Shown for Test Example 10.

Press the **Compute** button to perform the analysis. A message window will open stating that a few of the annual maximums occurred during the beginning of the year. The message suggests that the user change the year/season specification to capture independent events. You want to minimize the possibility that the same flood event is used for consecutive years. Press the OK button to finish the compute. Once the computations have been completed, a message window will open stating **Compute Complete**. Close this window and then select the **Tabular Results** tab within the analytical analysis. The results table should look Figure B-74. The top portion of the results table contains the percent chance exceedance for all durations (the report contains confidence limits). The bottom portion of the results table contains the statistics for all duration.

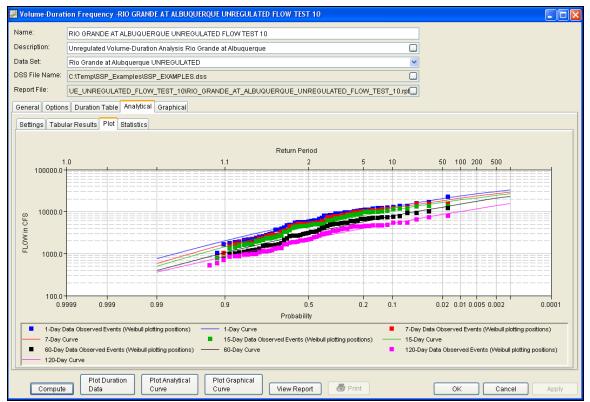
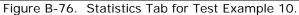
HEC-SSP User's Manual

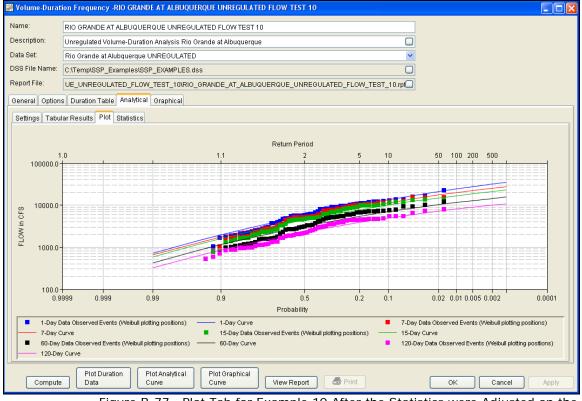
Name:	RIO GRANDE	GRANDE AT ALBUQUERQUE UNREGULATED FLOW TEST 10											
Description:	Unregulated \	/olume-Duration Analysis Rio G	Frande at Albuquerque										
Data Set:	Rin Grande a	de at Alubquerque UNREGULATED											
DSS File Name:													
		emp\SSP_Examples\SSP_EXAMPLES.dss											
Report File:	UE_UNREGU	ILATED_FLOW_TEST_10\RIO_	GRANDE_AT_ALBUQUERQUE	E_UNREGULATED_FLOW_TE	ST_10.rpt								
General Option	s Duration Ta	ble Analytical Graphical											
Settings Tabu	lar Results PI	ot Statistics											
	Volum	e-Duration Frequency Curves fo	IT RIO GRANDE AT ALBUQUER	QUE UNREGULATED FLOW	TEST 10, Average Daily FLOW ir	n CFS							
Percer Chanc Excee	e	1	7	15	60	120							
0.		33329.5 29109.1		26569.0 24369.4	23378.1	15649.0 🔺							
0.		30373.0			20836.9	13904.4							
0.		26426.8	23452.2	21367.9	17581.9	11702.5							
1.		23415.6	20905.0	19027.5	15203.0	10115.6							
2.		20383.6	18291.8	16628.1	12899.3	8595.4							
5.		16341.2 13247.6	14733.7 11956.0	13364.6	9971.9	6684.3 5306.9							
10		13247.6		10820.9 8195.5	7845.0 5783.2	3975.8							
50		5680.9	9083.2 5007.3	4485.5	3084.8	2222.6							
80		2962.9	2506.3	2224.9	1547.8	1195.0							
90		2002.3		1480.4	1052.6	850.4							
95		1478.4	1676.7 1177.6	1034.5	755.5	636.8							
99		773.0			392.5	362.5							
Statis	stics	1	7	500.1 15	60	120							
Me	an	3.731	3.670	3.622	3.470	3.335							
Standa	rd Dev.	0.319	0.336	0.341	0.342	0.311							
Station		-0.438	-0.529	-0.533	-0.330	-0.231							
Regiona													
Weighte													
Adopter		-0.438	-0.529	-0.533	-0.330	-0.231							
# Ye		61	61	61	61	61							
	Vissing	4	4	4	4	3							

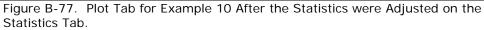
Figure B-74. Tabular Results Tab for Test Example 10.

As shown in Figure B-75, the **Plot** tab contains a graph of the systematic data and the computed frequency curves. Notice how some of the frequency curves look like they might cross if the lines were extended. The **Statistics** tab can be used to modify the computed statistics to ensure that the frequency curves are consistent.

HEC-SSP User's Manual


Figure B-75. Plot Tab for Example 10.


For this example, the standard deviation and the adopted skew values were modified to make sure the volume-duration frequency curves were consistent. As shown in Figure B-76, the check boxes next to mean, standard deviation, and adopted skew were checked and then user-adjusted statistics were entered into the table for all durations. The **Compute** button must be pressed after adjusted statistics have been entered in order for the program to recompute the frequency curves using the user-adjusted statistics. Figure B-77 shows the **Plot** tab after the user-adjusted statistics were entered on the **Statistics** tab. Results on the **Tabular Results** tab will also update when user-adjusted statistics are entered on the **Statistics** tab.

HEC-SSP User's Manual

🕌 Volume-Durat	ion Frequency -RIO	GRANDE AT ALB	BUQUERQUE UNREGULATE	D FLOW TEST 10			
Name:	RIO GRANDE AT ALB	UQUERQUE UNF	REGULATED FLOW TEST 10				
Description:	Unregulated Volume-	Duration Analysis	s Rio Grande at Albuquerque				
Data Set:	Rio Grande at Alubqu	erque UNREGUL	ATED			~	
DSS File Name:	C:\Temp\SSP_Examp	les\SSP_EXAMPI	LES.dss				
Report File:	UE UNREGULATED	FLOW TEST 10	0\RIO_GRANDE_AT_ALBUQ	JERQUE UNREGUL	TED FLOW T	EST 10 ml	
Conorol Ontion	Duration Table An						
			ai				
Settings Tabul	ar Results Plot Stati	stics					
-0.20	•				Log Trans	formation: On	
-0.30		•			Distributio	n: LogPearsonIII	
8 -0.40					X-axis Para	meter Y-axi	s Parameter
-0.50	•	•		•	Mean	🖌 Ske	N 🔽
-0.60	3.35 3.4	3.45 3.5	3.55 3.6 3.65	3.7 3.75		Update Plot	
		Mea	in			v	
Sample Statist	ics 1		7	15		60	120
Mean		3.731	3.67		3.622	3.470	3.335
Standard Dev.		0.319	0.33		0.341	0.342	0.311
Station Skew Adopted Skew		-0.438	-0.53 -0.53		-0.533 -0.533	-0.330 -0.330	-0.231 -0.231
					0.000	0.000	0.201
Use Adjust	ed 1		7	15		60	120
Statist	cs						
Mean		3.731 0.33	3.6 0.3		3.622 0.315	3.47 0.31	3.335
Adopte		-0.46	-0.4		-0.55	-0.56	-0.57
	Plot Duration	Plot Analytic	cal Plot Graphical				
Compute	Data	Curve	Curve	View Report	🖨 Print	OK	Cancel Apply

In addition to the Tabular Results and Plot tabs, graphical plots can be opened by selecting the **Plot Duration Data** or **Plot Analytical Curve** buttons at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-78.

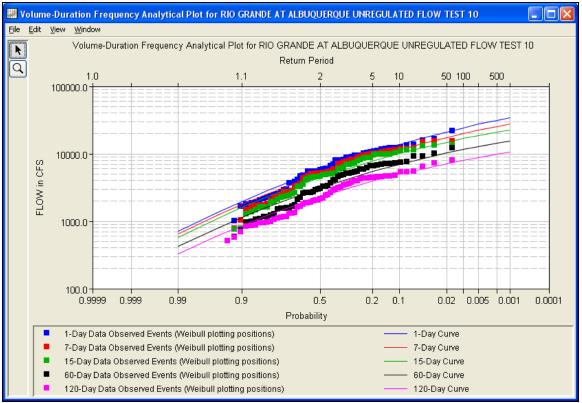


Figure B-78. Plot of the Frequency Curve Results for Test Example 10.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-79 is the report file for Test Example 10.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and

the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

RIO_GRANDE_AT_ALBUQUERQUE_UNREGULATED_FLOW_TEST_10.rpt
Eile Edit Search Format
File: 10_GRANDE_AT_ALBUQUERQUE_UNREGULATED_FLOW_TEST_10\RIO_GRANDE_AT_ALBUQUERQUE_UNREGULATED_FLOW_TEST
Volume-Duration Analysis
25 Jun 2008 04:03 PM
Input Data
Analysis Name: RIO GRANDE AT ALBUQUERQUE UNREGULATED FLOW TEST 10
Description: Unregulated Volume-Duration Analysis Rio Grande at Albuquerque
Data Set Name: Rio Grande at Alubquerque UNREGULATED
DSS File Name: C:\Documents and Settings\q0hecmjf\My Documents\SSP Projects\SSP_Examples\SSP_EXAMPLES.dss DSS Pathname: //UNREG_ALBUQUERQUE/FLOW/01JAN1953/1DAY/CALC/
Project Path: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples Report File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP Examples\VolumeFrequencyAn(
Result File Name: C:\Documents and Settings\qOhecmjf\My Documents\SSP Projects\SSP_Examples\VolumeFrequencyAna
Analyze Maximums
Analysis Year: Calendar Year
Record Start Date: 26 Apr 1941
Record End Date: 30 Sep 2002
User-Specified Durations Duration: 1 day
Duration: 7 days
Duration: 15 days Duration: 60 days
Duration: 120 days
Plotting Position Type: Weibull
Probability Distribution Type: Pearson Type III
Use Log Transform
Upper Confidence Level: 0.05
Lower Confidence Level: 0.95
User-Specified Frequencies
Frequency: 0.1 Frequency: 0.2
Frequency: 0.5
Frequency: 1.0 Frequency: 2.0
Frequency: 2.0
Frequency: 10.0
Frequency: 20.0 Frequency: 50.0
Listed Listed

Figure B-79. Report File for Test Example 10.

Example 11: Volume-Duration Frequency Analysis, Minimum Flows

This example demonstrates how to create a low flow Volume-Duration Frequency analysis. The data for this example was downloaded from the USGS. It is comprised of daily average flow for the Chattahoochee River at Cornelia, Georgia. Drought conditions were occurring in the region at the time of this analysis. Among other things, a low flow analysis can be used to determine the severity of a drought. The period of record for this example is from 1957 to 2007. To view the data, right-click on the data record labeled "CHATTAHOOCHEE **RIVER-CORNELIA, GA-FLOW**" in the study explorer and then select **Plot**. The data will appear as shown in Figure B-80.

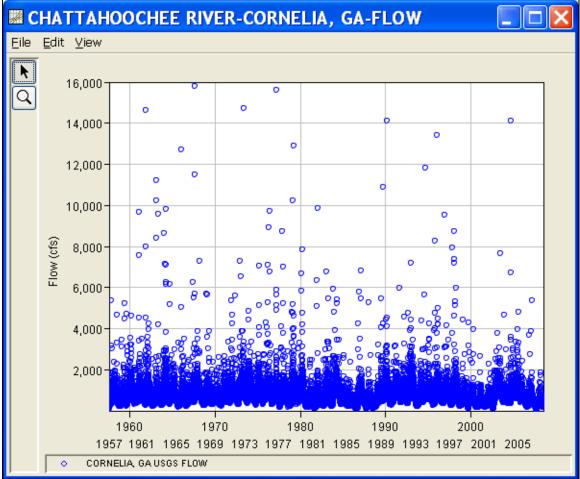


Figure B-80. Plot of Daily Average Flow for Example 11.

A Volume-Duration Frequency analysis has been developed for this example. To open the Volume-Duration Frequency analysis editor for test example 11, either double-click on the analysis labeled **LOW FLOW VOLUME-DURATION ANALYSIS TEST 11** from the study explorer, or from the **Analysis** menu select open, then select **LOW FLOW VOLUME-DURATION ANALYSIS TEST 11** from the list of available analyses. When test 11 is opened, the Volume-Duration Frequency analysis editor will appear as shown in Figure B-81.

📈 Volume-Durat	ion Frequency -LOW FLOW VOLUM	E DURATION ANALYSIS TEST 11*		
Name: Description: Data Set: DSS File Name: Report File: General Option Log Transform	s Duration Table Analytical Graphi	a low flow analysis using HEC-SSP A, GA-FLOW PLES.dss TEST_11LOW_FLOW_VOLUME_DURATION_AI	CTime Window Modification	
Maximum or Mi O Analyze Ma O Analyze Min Year Specificat O Water Year	e Log Transform inimum Analysis iximums nimums ion r (starts Oct 1) //ear (starts Jan 1) 01Jan	Weibull (A and B = 0) Median (A and B = 0.3) Hazen (A and B = 0.5) Other (Specify A, B) Plotting position computed using formula (m-A)/(n+1-A-B) Where:	End Points DSS Range is 31JUL1957 - 22JUN2008 Start date Gend date Season To define a subset of the year season start: season NOTE: season must be within a year, as defined in the Year Specification	m end:
Compute	Plot Duration Plot Analytica Data Curve	al Plot Graphical Curve View Report	Se Print OK	Cancel Apply

Figure B-81. Volume-Duration Frequency Analysis Editor for Test Example 11.

Shown in Figure B-81 are the general settings that were used to perform this frequency analysis. For this analysis, the **Use Log Transform** option was selected, the **Weibull** plotting position method was selected, **Analyze Minimums** was selected, and the **Calendar Year** option was selected. The Calendar Year option was selected because low flows are possible in late September, early November. Starting the year on January 1 minimizes the possibility of using the same low flow event in multiple years. An end date of 31 December 2007 was entered in the **Time Window Modification**. This end date was specified because not all the data for the summer of 2008 was available at the time of the analysis.

Shown in Figure B-82 is the Volume-Duration Frequency analysis editor with the **Options Tab** selected. Features on this tab include an option to override the default **Flow-duration** values, an option to override the default **Frequency Ordinates**, and **Output Labeling**.

HEC-SSP User's Manual

🞇 Volume-Duration Frequency -LOW FLOW VOLUME I	DURATION ANALYSIS TEST 11*		
Name: LOW FLOW VOLUME DURATION ANALY Description: This example shows how to perform a lo Data Set: CHATTAHOOCHEE RIVER-CORNELIA, C DSS File Name: C:\Temp\SSP_Examples\SSP_EXAMPLE Report File: OW_VOLUME_DURATION_ANALYSIS_T General Options	w flow analysis using HEC-SSP GA-FLOW ES.dss EST_11\LOW_FLOW_VOLUME_DURATION_ANALYSIS_T		
Contractions Change or add to default values Duration in days Curation in	User Specified Frequency Ordinates Use Values from Table below Frequency in Percent	1-day 7-day 30-day 60-day 90-day	0 reshold
DSS data name is FLOW change label FLOW Data Unit DSS Data Unit is CFS change label CFS Plot Duration Plot Analytical Curve	Ouration High Threshold 1-day		day 30-day

Figure B-82. Options Tab Shown for Test Example 11.

Once all of the General and Optional settings are set or selected, the user can extract the volume-duration data. Select the **Duration Data** tab and press the **Extract Volume-Duration Data** button at the bottom of the table. The table should then fill with the flow-duration values, as shown in Figure B-83.

Name:	LOW FLO	W VOLUME D	URATION ANA	LYSIS TEST	11						
Description:	This exam	ple shows h	ow to perform a	low flow ana	ilysis using HE	C-SSP					
Data Set:	CHATTAH	OOCHEE RIN	/ER-CORNELI	A, GA-FLOW					*		
DSS File Name:	C:\Temp\S	SP Example	s\SSP_EXAMF	1 ES das							
Report File:											
vepon rile.	OW_VOLU	JME_DURATI	ON_ANALYSIS	_TEST_THD	OW_FLOW_VC	DEUME_DUR.	ATION_ANALY	SIS_TEST_1	1.rpt)		
General Option	ns Duration	n Table 🛛 Anal	ytical Graphic	al							
					Volume-Dur	ation Data					
-			Lov	vect Mean Va	lue for Duration		ily ELOW(in Cl				
Year -	1		7		30		60 61		90		
-	Date	FLOW	Date	FLOW	Date	FLOW	Date	FLOW	Date	FLOW	
1958	12/13/1958	202.0	12/26/1958	266.4	12/21/1958	299.4	12/26/1958	307.1		332.6	
	08/30/1959	202.0	08/30/1959	306.3	01/01/1959	370.7	01/01/1959		01/01/1959	344.5	-
	07/17/1960	325.0	07/19/1960	427.9	12/10/1960	467.0	12/31/1960		12/31/1960	572.5	
	1/12/1961	270.0	10/29/1961	367.9	11/12/1961	378.6			12/09/1961	444.2	
	10/28/1962	198.0	11/08/1962	258.6	11/08/1962	282.0			11/17/1962	352.5	
	10/20/1963	244.0	10/21/1963	288.4	11/04/1963	304.9			11/22/1963	372.3	
	09/27/1964	300.0	09/28/1964	337.9	09/29/1964	414.9			01/01/1964	459.9	
	09/26/1965	175.0		277.1	09/29/1965	303.6	12/29/1965		12/31/1965	357.8	
1966	09/11/1966	200.0	09/12/1966	267.3	01/02/1966	303.2	01/02/1966	348.2	01/04/1966	348.9	
	08/19/1967	380.0	08/19/1967	476.9	04/23/1967	576.0	01/02/1967	625.7	01/01/1967	577.2	
1968	09/15/1968	245.0	08/30/1968	297.0	09/15/1968	352.4	10/15/1968	363.7	11/07/1968	372.4	
1969	10/19/1969	296.0	10/30/1969	366.4	10/31/1969	425.0	08/15/1969	510.5	01/01/1969	516.4	
	10/04/1970	229.0		261.6	10/18/1970	306.8		344.5	10/28/1970	404.9	
	10/31/1971	363.0	10/13/1971	436.6	01/01/1971	451.0			01/01/1971	495.0	
	10/15/1972	290.0	09/16/1972	345.1	09/29/1972	398.8			11/02/1972	472.7	
	10/27/1973	372.0	10/27/1973	444.1	11/18/1973	453.2	11/20/1973		11/20/1973	556.4	
	11/08/1974	278.0		372.0	11/16/1974	408.3			12/07/1974	487.2	
	08/24/1975	307.0	08/27/1975	390.7	09/06/1975	454.6			01/01/1975	518.8	
	09/23/1976	288.0	09/23/1976	372.9	10/06/1976	433.2			11/26/1976	510.1	
	19/03/1977	153.0	09/05/1977	249.4	09/04/1977	332.9	09/06/1977	351.0	09/13/1977	413.5	
1.877						olume-Durati					

Figure B-83. Volume-Duration Data Table for Example 11.

Once the data has been extracted, the user must choose to perform an Analytical or Graphical analysis. In this example, an analytical analysis was performed. Shown in Figure B-84 is the **Settings** tab for the analytical analysis. As shown, the distribution selected for this example is LogPearsonIII. The **Skew** option was set to **Use Station Skew** and the **Do Not Compute Excepted Probability** option was selected.

HEC-SSP User's Manual

😹 Volume-Durati	on Frequency -LOW	FLOW VOLUME DU	RATION ANALYSIS TEST 11		
Name:	LOW FLOW VOLUME	DURATION ANALYSIS	S TEST 11		
Description:	This example shows I	how to perform a low 1	flow analysis using HEC-SSP		
Data Set:	CHATTAHOOCHEE R			✓	
DSS File Name:	C:\Temp\SSP_Examp	les\SSP_EXAMPLES.	dss		
Report File:	OW_VOLUME_DURA	TION_ANALYSIS_TES	ST_11\LOW_FLOW_VOLUME_DURATI	ON_ANALYSIS_TEST_11.rpt	
General Options	Duration Table An:	alytical Graphical			
Settings Tabul	ar Results Plot Stati	ietice			
		101100	Skew		
Log Transforma	ation: On				
Distribution:			 Use Station Skew 		
LogPearsonIII	~		O Use Weighted Skew		
Expected Prob	ablity Curve		O Use Regional Skew		
🔿 Compute	Expected Prob. Curve		Duration	Reg. Skew	R.Skew MSE
💿 Do Not Co	mpute Expected Prob.	. Curve	1		
L			7		
			60		
			90		
	Plot Duration	Plot Analytical	Plot Graphical		
Compute	Data	Curve	Curve View Report	🖨 Print	OK Cancel Apply

Figure B-84. Settings Tab Shown for Test Example 11.

Press the **Compute** button to perform the analysis. A message window will open stating that a few of the annual maximums occurred during the beginning of the year. The message suggests that the user change the year/season specification to capture independent events. You want to minimize the possibility that the same flood event is used for consecutive years. Press the OK button to finish the compute. Once the computations have been completed, a message window will open stating **Compute Complete**. Close this window and then select the **Tabular Results** tab within the analytical analysis. The results table should look Figure B-85. The top portion of the results table contains the percent chance exceedance for all durations (the report contains confidence limits). The bottom portion of the results table contains the statistics for all duration.

	LOW FLOW	VOLUME DURATION ANALY	BIS TEST 11									
escription:	This exampl	e shows how to perform a lo	w flow analysis using HEC-S	SP								
ata Set:	CHATTAHO	TTAHOOCHEE RIVER-CORNELIA, GA-FLOW										
SS File Name:	C:\Temp\SS	P_Examples\SSP_EXAMPLE	S.dss									
eport File:	· · · · ·			ME_DURATION_ANALYSIS_T								
opontrino.	UW_VOLUN	IE_DURATION_ANALTSIS_T		IE_DURATION_ANALTSIS_1	col_llthu							
eneral Option	s Duration T	able Analytical Graphical										
Settings Tabul	lar Results	Plot Statistics										
countyc												
		ume-Duration Frequency Cu	IVES FOR LOW FLOW VOLUME	DURATION ANALYSIS TEST	11, Average Daily FLOW in Ci	-8						
Percen Chance		1	7	30	60	90						
Exceed			·									
99.		470.4	491.6	572.1	628.2	656.4 🗸						
95.		404.3	453.3	517.2	569.1	592.4						
90.1		367.1	426.2	482.3	531.6	553.3						
80.		321.4	387.5		481.5	502.1						
50.1	-	236.4	300.3	338.5	377.0	397.7						
20.1	-	161.4	208.6	241.7	272.3	294.2						
10.1	-	128.1	164.2	195.3	221.8	244.0						
5.0		104.0	131.3		183.7	205.8						
2.0		80.7	99.1	126.1	145.5	166.9						
1.0		67.4	80.7	105.8	123.0	143.7						
0.6		56.7 45.5	66.0 50.9	89.3	104.5 84.7	124.3 103.2						
U.2 Statis		40.0	50.9	30	64.7	90						
Mea		2.351	2.444		2.552	2.579						
Standar		0.182	0.171	0,159	0.154	0.143						
Station		-0.758	-1.201	-0.989	-0.977	-0.888						
		-0.730	-1.201	-0.303	-0.377	-0.000						
Regiona												
Regiona Weighter		-0.758	-1 201	-0.989	-0.977	-0.888						
Regiona Weighteo Adopted	Skew	-0.758 -1.201 -0.989 -0.977 -0.888 50 50 50 50 50 50 50										

Figure B-85. Tabular Results Tab for Test Example 11.

As shown in Figure B-86, the **Plot** contains a graph of the systematic data and the computed frequency curves. Notice how some of the frequency curves look like they might cross if the lines were extended. The **Statistics** tab can be used to modify the computed statistics to ensure that the frequency curves are consistent.

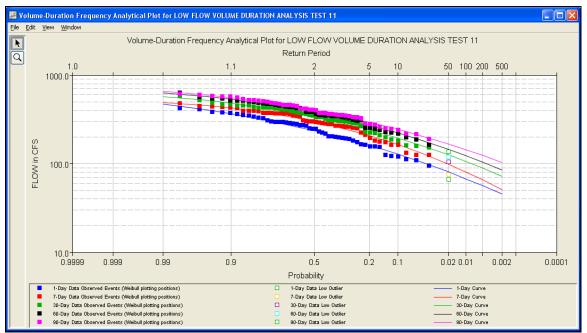
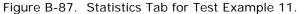



Figure B-86. Plot for Test Example 11.

For this example, the standard deviation and the adopted skew were modified to make sure the volume-duration frequency curves were consistent. As shown in Figure B-87, the check boxes next to mean, standard deviation, and adopted skew were checked and then user-adjusted statistics were entered into the table for all durations. The **Compute** button must be pressed after adjusted statistics have been entered in order for the program to recompute the frequency curves using the user-adjusted statistics. Figure B-88 shows the **Plot** tab after the user-adjusted statistics were entered on the **Statistics** tab. Results in the **Tabular Results** table will also update when user-adjusted statistics are entered on the **Statistics** tab.

HEC-SSP User's Manual

🐺 Volume-Durat	ion Freq	uency	-LOW	FLOW	VOLI	UME DUR	ATION A	NALYSIS T	TEST 11							
Name:	LOW FL	ow vo	LUME	DURATIO	ON A	NALYSIS	TEST 11									
Description:	This exa	mple s	hows h	how to pe	erfori	m a low fl	ow analys	is using HB	EC-SSP							
Data Set:	CHATTA	AHOOCHEE RIVER-CORNELIA, GA-FLOW														
DSS File Name:	C:\Temp	ASSP_	Examp'	les\SSP_	EXA	MPLES.c	lss									
Report File:	ow voi	LUME	DURA	tion an	ALY:	SIS TES	T 11\LOW	FLOW V	OLUME I	DURATION	ANALYSIS_	TEST 11.rpt				
General Option							-						_			
			_		orap	nicar										
Settings Tabu	lar Resulf	s Plot	{ Stati:	stics	_											
							•				-	formation: C				
ue 2.50 ₩ 2.40											Distributio X-axis Para		ogPearsonli		Parameter	
₩ 2.40											Duration	meter	~	Mean		~
0	10	20	3	، 0	40	50	60	70	80	90			Updat		ר	
				D	Durat	ion							opuu	01101		
Sample Statist	tics		1				7			30			60		90	
Mean					351			2.444			2.504			2.552		2.579
Standard Dev. Station Skew					182 758			0.171			0.159			0.154		0.143
Adopted Skew					758			-1.201			-0.989			0.977		-0.888
Use Adjust			1				7			30			60		90	
Statist	ics															
Mean					351			2.444			2.504			2.552 0.165		2.579
Standa).18 -0.9			-0.88			-0.86			-0.84		0.16
					2.0			0.00			0.00			5.54		5.62
		Duratio	on	Plot A		tical	Plot Gra	aphical								
Compute	Data	9		Curve)		Curve		View	Report	🖨 Print		O	<	Cancel	Apply

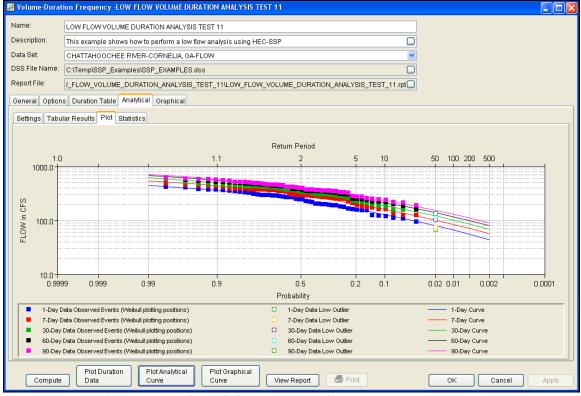


Figure B-88. Plot Tab for Test Example 11.

In addition to the Tabular Results and Plot tabs, graphical plots can be opened by selecting the **Plot Duration Data** or **Plot Analytical Curve** buttons at the bottom of the analysis window. A plot of the results for this test example is shown in Figure B-89.

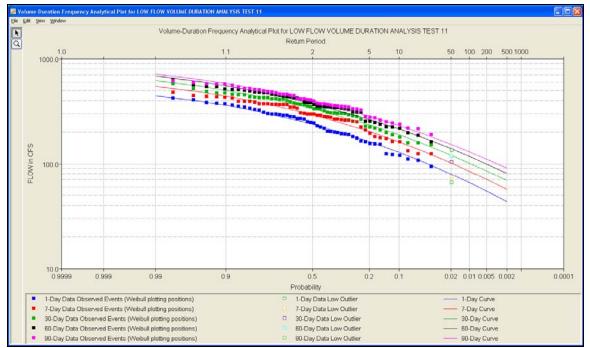


Figure B-89. Plot of the Frequency Curve Results for Test Example 11.

The tabular and graphical results can be sent to the printer or the windows clipboard for transfer into another piece of software. To print the tabular results, select **Print** from the bottom of the analysis window. To send the tabular results to the windows clipboard, highlight the data you want to send to the clipboard and then press the Control-C key sequence. To print the graphical results, first bring up the graphical plot and then select **Print** from the **File** menu. To send the graphic to the windows clipboard, select **Copy to Clipboard** from the **File** menu.

In addition to the tabular and graphical results, there is a report file that shows the order in which the calculations were performed. To review the report file, press the **View Report** button at the bottom of the analysis window. When this button is selected a text viewer will open the report file and display it on the screen. Shown in Figure B-90 is the report file for Test Example 11.

The report file contains a listing of the input data, preliminary results, outlier and historical data tests, additional calculations needed, and the final frequency curve results. Different types and amounts of information will show up in the report file depending on the data and the options that have been selected for the analysis.

Skew Weigh ased on 50 e		merrequencyAhaiy	ISISPERSULS ILLUW			
sed on 50 e	ting >>			FLOW_VOLUN	DURATION_ANALYSIS_TEST_111LOW_FLOW_VOLUME_DURATION_ANALYSIS_TEST_11.rpt	
sed on 50 e an-square e:						
an-square e:						
		quare error of		0.252		
		hal skew is und				
_						
Frequency		LA, GA-FLOW (7-	der Minl			
Computed	Expected	Percent	Confidence	Limits		
Curve	Probability	Chance Non- Exceedance	0.05	0.95		
	,					
491.6		99.0	571.5	436.8		
453.3		95.0	520.7	405.7		
426.2 387.5		90.0 1	485.4	383.4		
300.3		50.0	330.5	383.4 350.9 274.1		
208.6		20.0	229.8	186.3		
164.2 131.3		10.0	184.1	142.2 109.7		
131.3		99.0 95.0 90.0 20.0 10.0 2.0 10.0 1.0 0.5 0.5 0.2	150.6	78.8		
80.7		1.0	98.1	78.8 61.8		
66.0		0.5	82.4	48.7		
50.9		0.2	65.7	35.7		
Swatowotia	Statistics >>					
		LA, GA-FLOW (7-	day Min)			
	Transform:					
	OW, CFS	Nu	mber of Events			
Mean Stordord D	2.4	444 Histori	c Events			
Station Sk	ем 0.1 ем -1.2	201 High Out	liers	1 1		
Regional SI	kew ·	Zero Ev	ents	ōi		
Weighted SI	kew -	144 Histori 171 High Ou 201 Low Out Zero Ev Missing 201 Systema	Events	0 1		
Adopted Sk	ew -1.4	201 Systema	tic Events	50 1		
USER Freque	ency Curve >> RIVER-CORNELI	LA, GA-FLOW (7-	day Min)			
		Percent Chance Non-		Limits 0.95		

Figure B-90. Report File for Test Example 11.