Two-Dimensional Subgrid Sediment Transport Modeling with HEC-RAS

Alex Sánchez, PhD Stanford Gibson, PhD

Hydrologic Engineering Center, Institute for Water Resources, U.S. Army Corps of Engineers, U.S.A.

US Army Corps of Engineers .

Hydrodynamics

- Governing Equations
 - Diffusion Wave Equation
 - Shallow Water Equations
- Subgrid Technology
- Boundary Conditions
 - Normal Depth
 - Stage time series
 - Rating curve
 - Flow time series
 - Precipitation

Hydrologic Engineering Center

BUILDING STRONG_®

Sediment Transport

Total-load Transport Equation

 $\frac{\partial}{\partial t} \left(\frac{hC_{tk}}{\beta_{tk}} \right) + \nabla \cdot (hUC_{tk}) = \nabla \cdot \left(\varepsilon_{tk} h \nabla C_{tk} \right) + E_{tk} - D_{tk}$

Erosion Rate

 $E_{tk} = r_A^{SS} E_{tk}^{SS} + r_A^{CF} E_{tk}^{CF}$

Deposition Rate

 $D_{tk} = r_A^{CF} D_{tk}^{CF}$

 Any number of grain classes U = Current velocity h = Water depth k = Grain class $\beta_{tk} = \text{Total-load correction factor}$ $\varepsilon_{tk} = \text{Total-load diffusion coef.}$ $C_{tk} = \text{Total-load sediment conc.}$

 $E_{tk} \rightarrow$ Total-load erosion rate $CF \rightarrow$ Concentrated flow $SS \rightarrow$ Splash and sheet flow $r_A^{SS} \rightarrow$ Fraction of area with SS erosion $r_A^{CF} \rightarrow$ Fraction of area with CF erosion $E_{tk}^{CF} \rightarrow$ Total-load CF erosion rate $E_{tk}^{SS} \rightarrow$ Total-load SS erosion rate

Hydrologic Engineering Center

Subgrid Modeling

- Representation of the physical terrain and processes at a subgrid scale
- Allows for larger grid cells reducing computational cells, and computational times

Validation: Galappatti and Vreugdenhil (1985)

- Flume Experiment
- Upstream current velocity: 0.51 m/s
- Downstream water depth: 0.39 m

- Mannings: 0.025 s/m^{1/3}
- Median grain size: 0.16 mm
- Upstream sediment flux: 0.04 kg/m/s
 - Transport Potential: van Rijn (2007)

Results

Hydrologic Engineering Center

6

Validation: Clear-water Scour

Validation: Flume Experiment of Weise (2002) Flow

Upstream flow: 150 l/s

Downstream depth: 0.312 m

- Mean grain size: 5.5 mm
- Geometric Standard Deviation: 1.47
- Duration:130 min

Plan View of Flume

Validation: Upper Mississippi

- Time Period: 2014 to 2016
- Study Extent: River Station 110 (Chester Gage) to River Station 92 (two miles downstream of Red Rock Gage)
- Upstream Boundary Condition: Chester Flow Hydrograph
- Downstream Boundary Condition: Normal Depth, Red Rock Rating Curve

Terrain and Computational Domain

Calibration - Hydrodynamics

	Name	Default Mann n	Base Mann n (blank for default)	
1	nodata			
2	255		0.045	
3	barren land rock/sand/clay	0.025	0.025	
4	chevron	0.05	0.05	
5	cultivated crops	0.035	0.035	
6	deciduous forest	0.16	0.1	
7	developed, high intensity	0.15	0.1	_
8	developed, low intensity	0.1	0.1	(£
9	developed, medium intensity	0.08	0.08	ge
10	developed, open space	0.04	0.04	Sta
11	emergent herbaceous wetlands	0.07	0.07	•,
12	evergreen forest	0.16	0.1	
13	grassland/herbaceous	0.035	0.035	
14	mixed forest	0.16	0.1	
15	open water	0.04	0.028	
16	pasture/hay	0.03	0.028	
17	shrub/scrub	0.1	0.1	
18	wingdam	0.05	0.05	
19	woodv wetlands	0.12	0.1	

6/14/2015 6/15/2015 6/16/2015 6/17/2015 6/18/2015 6/19/2015 6/20/2015 6/21/2015 6/22/2015

Hydrologic Engineering Center

BUILDING STRONG_®

Results – In Progress Calibration

Comparison of measured and computed bed change

Part 2 of 3: Entering