# Non-Newtonian Validation and Verification in HEC-RAS







Stanford Gibson, PhD Alejandro Sanchez, PhD Hydrologic Engineering Center

Ian Floyd Gaurav Savant Coastal and Hydraulics Laboratory



### Local News

#### A Year Ago, Montecito Debris Flows Brought 'Unfathomable Destruction' to Coastal Community

Residents and first responders recall and reflect on the fateful Jan. 9 events that reshaped their world



Santa Barbara County responders launched into rescue mode in the earlymorning hours of Jan. 9, 2018 after debris flows devastated Montecito. (Ray Ford / Noozhawk photo)



A house sits among boulders and mud along Glen Oaks Drive in Montecito after a major storm hit the burn area Wednesday. (Wally Skalij / Los Angeles Times)



# \$200 Million (USD)



### **HEC-RAS**

1&2D Hydraulic and Morphdynamic Software

100,000 Downloads/Year in 200 countries

Newtonian Assumptions



A house sits among boulders and mud along Glen Oaks Drive in Montecito after a major storm hit the burn area Wednesday. (Wally Skalij / Los Angeles Times)





### **HEC-RAS**

1&2D Hydraulic and Morphdynamic Software

100,000 Downloads/Year in 200 countries

Newtonian Assumptions



### Non-Newtonian Validation and Verification in HEC-RAS

## 1.Non-Newtonian Closure in HEC-RAS

2.Laboratory and Meso-Scale Validation and Verification

# **3.Field Applications**



US Army Corps of Engineers ®





### Non-Newtonian Validation and Verification in HEC-RAS

1.Non-Newtonian Closure in HEC-RAS

2.Laboratory and Meso-Scale Validation and Verification

# **3.Field Applications**



US Army Corps of Engineers®





### Taxonomy of Geologic Flows



### Taxonomy of Geologic Flows



Clear Water Resisting Forces

Mud and Debris Flow Resisting Forces

We Integrate These Effects in the Momentum Equation by Partitioning the Friction Slope



Clear Water Resisting Forces

Mud and Debris Flow Resisting Forces

We Integrate These Effects in the Momentum Equation by Partitioning the Friction Slope



Which Allows Us To Quantify These Effects with Stress-Strain (Rheological) Models

# **Rheological Models**

Deformational/Stress-Strain Relationships





# Selecting a Non-Newtonian Method in HEC-RAS

Non-Newtonian Parameters are Unsteady Flow Variables

| 上 Un                                                                                        | Unsteady Flow Data - Exp1a 2D (NN-Bing) — 🗆 🗙                                            |                                                                                          |                             |                                                         |                                                        |  |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------|--------------------------------------------------------|--|--|--|
| File                                                                                        | Options                                                                                  | Help                                                                                     |                             |                                                         |                                                        |  |  |  |
| Delete Boundary Condition(s)<br>DSS Pathname Summary Table<br>Boundary Condition Names      |                                                                                          | Apply Data      Initial Conditions   Meteorological Data        Boundary Condition Types |                             |                                                         |                                                        |  |  |  |
| Internal RS Initial Stages<br>Flow Minimum and Flow Ratio Table<br>Observed (Measured) Data | ternal RS Initial Stages<br>ow Minimum and Flow Ratio Table<br>bserved (Measured) Data > |                                                                                          |                             | Stage/Flow Hydr. Uniform Lateral Inflow Navigation Dams | Rating Curve<br>Groundwater Interflow<br>IB Stage/Flow |  |  |  |
| Water Temperature (for Unsteady Sediment)                                                   |                                                                                          | Precipitation                                                                            |                             |                                                         |                                                        |  |  |  |
| Non Newtonian Parameters<br>Old River Diversion Adjustment                                  |                                                                                          | Add Boundary Condition Location                                                          |                             |                                                         |                                                        |  |  |  |
| Stor<br>1 P/                                                                                | age/2D                                                                                   |                                                                                          |                             |                                                         |                                                        |  |  |  |
|                                                                                             | arson 1a                                                                                 | BCL                                                                                      | ine: DS                     | Normal Depth                                            |                                                        |  |  |  |
| Non-Ne                                                                                      | wtonian f                                                                                | luid pro                                                                                 | perties have been specified | 1                                                       |                                                        |  |  |  |

| Non-Newtonian Options and Parameters                   |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| Non-Newtonian Method Bingham                           |  |  |  |  |  |  |  |  |  |  |  |
| Yeild Strength: Obrian 💌 a 1.1 b 3.                    |  |  |  |  |  |  |  |  |  |  |  |
| Sediment Laden Viscocity: User Defined K 💌 K 0         |  |  |  |  |  |  |  |  |  |  |  |
| Generalized Herschel-Bulkley Parameters: K 22.5 n 0.45 |  |  |  |  |  |  |  |  |  |  |  |
| Clastic Methods: Voellmy $\phi$ 0                      |  |  |  |  |  |  |  |  |  |  |  |
| Hindered Settling Method: No Hindered Settling 💌       |  |  |  |  |  |  |  |  |  |  |  |
| Hydraulics Only                                        |  |  |  |  |  |  |  |  |  |  |  |
| Representative Grain Size - ds (mm):                   |  |  |  |  |  |  |  |  |  |  |  |
| Volumetric Concentration (Cv) (%) 65.                  |  |  |  |  |  |  |  |  |  |  |  |
| Select Bulking Method: Do Not Bulk                     |  |  |  |  |  |  |  |  |  |  |  |
| OK Cancel                                              |  |  |  |  |  |  |  |  |  |  |  |

1D, Unsteady, FD (Working)
2D, Unsteady, FV (Working)
1D, Unsteady, FV (coming soon)
1D/2D Mobile Bed (coming later)
-Not in Steady or Quasi-Unsteady

### Non-Newtonian Validation and Verification in HEC-RAS

## 1.Non-Newtonian Closure in HEC-RAS

2.Laboratory and Meso-Scale Validation and Verification

# **3.Field Applications**



US Army Corps of Engineers®







Experimental Study of the Grain-Flow, Fluid-Mud Transition in Debris Flows

Jeffrey D. Parsons,<sup>1</sup> Kelin X. Whipple, and Alessandro Simoni<sup>2</sup>





#### Fine 1D Simulations:

| Experimen | nt Material                  | W                           | R            | Slope (0)    | Snout<br>effect? | $U_p$                    | $U_{\mathrm{snout}}$ | Q                            |
|-----------|------------------------------|-----------------------------|--------------|--------------|------------------|--------------------------|----------------------|------------------------------|
| 1a<br>1b  | F<br>C <sub>m</sub> =83.2%→C | 16.8<br>2 <sub>v</sub> =65% | .073<br>.073 | 10.7<br>15.2 | None<br>None     | .24 (8.3)<br>1.17 (10.2) | .22(1.8)<br>.87(1.0) | .00189 (1.8)<br>.00692 (1.3) |
| 1c        |                              |                             | .05          | 15.2         | Some             | .26 (7.8)                | .16(1.7)             | .00061 (.4)                  |
| 2a        | MF                           | 14.8                        | .073         | 10.7         | None             | .83 (4.8)                | .57 (.9)             | .00391 (.6)                  |
| 2b        | $C = 85.2\% \rightarrow C$   | =68%                        | .073         | 13.7         | None             | 1.69 (2.3)               | 1.22(.7)             | .00988 (3.7)                 |
| 2c        | Cm <sup>-00.270</sup> 7 C    | ·v-00/0                     | .05          | 13.7         | Some             | .30(8.3)                 | .16(.3)              | .00096 (.4)                  |









#### **Fine 2D Simulations:**





#### RGui (64-bit)

File History Resize Windows

#### I'm working on a video on how to interact with the RAS HDF5 Results in R

US 2/20/2020



### 3. Hungr et al – Non-Newtonian Dam Breach

30.5 m Dam Breach 1,000+ m Runout ρ=1,835 km/m<sup>3</sup>

> **Bingham:**  $\tau_y = 1,500 \text{ N/m}^2$  $\mu_B = 100 \text{ Pa-s}$

$$\tau = \tau_{\mathcal{Y}} + \mu_B \left(\frac{dv_{\chi}}{dz}\right)$$



### 3. Hungr et al – Non-Newtonian Dam Breach



HEC-RAS 1D Finite Difference 2D Finite Volume Fortran Code

Adaptive Hydraulics 2D Finite Area C++ Code







#### **2D Adaptive Hydraulics**





# NON-NEWTONIAN FLOWS



### 4. USGS Debris Flume





### US Geological Survey - Debris Flume



### US Geological Survey - Debris Flume





### US Geological Survey - Debris Flume



### Non-Newtonian Validation and Verification in HEC-RAS

## 1.Non-Newtonian Closure in HEC-RAS

2.Laboratory and Meso-Scale Validation and Verification

# **3.Field Applications**



US Army Corps of Engineers ®







### **HEC-RAS**

1&2D Hydraulic and Morphdynamic Software

100,000 Downloads/Year in 200 countries

Newtonian Assumptions



This work was funded by: USACE Flood and Coastal R&D Post-Wild Fire Work Unit PI: Ian Floyd







1. Next Steps. What Non-Newtonian approaches would you like to see?

 Non-Newtonian (and 2D sediment transport) will be available for testing in a pre-Beta that will be available shortly. Email me if you want to test: stanford.gibson@usace.army.mil