Non-Newtonian Validation and Verification
: in HEC-RAS

| IR

TR

- | U
1

Stanford Gibson, PhD
Alejandro Sanchez, PhD

w‘m _lﬂ‘ Hydrologic Engineering Center

A 7*
S lan Floyd POST-WILDFIRE
us Army corps Gaurav Savant \ <& FLOOD RISK

of Engineerse Coastal and Hydraulics Laboratory ~— MANAGEMENT



Santa Barbara Mud-and-Debris Flow
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A Year Ago, Montecito Debris Flows Brought
‘Unfathomable Destruction’ to Coastal Community
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Mudslide-stricken California town is all but
emptied out as residents ordered to leave

Residents and first responders recall and reflect on the fateful Jan. 9 events

that reshaped their world

By KRYSTA FAURIA AND BRIAN MELLEY
A IATED PRESS JAN 12,2018 11:37 PM MONTECITO, CALIF.

Santa Barbara County responders launched into rescue mode in the early-
morning hours of Jan. 9, 2018 after debris flows devastated Montecito. (Ray

Ford / Noozhawk photo)
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Taxonomy of Geologic Flows
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We Integrate These Effects in the Momentum Equation by Partitioning the Friction Slope
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We Integrate These Effects in the Momentum Equation by Partitioning the Friction Slope
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Friction Slope is a Function We Can Also Express Internal
of Shear Stress Losses as a Stress
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Which Allows Us To Quantify These Effects with Stress-Strain (Rheological) Models



Rheological Models

Deformational/Stress-Strain Relationships
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Selecting a Non-Newtonian Method in HEC-RAS

Non-Newtonian Parameters are Unsteady Flow Variables
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1. Parson et al — Mudflow and Debris Flow

Experimental Study of the Grain-Flow, Fluid-Mud
Transition in Debris Flows

Jeffrey D. Parsons,' Kelin X. Whipple, and Alessandro Simoni*

@ Parsonetal (2001)
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2. Parson et al — Mudflow and Debris Flow

Fine 1D Simulations:
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3. A steady state debris flow will be deeper/shallower than a water flow of the same
volume?
a) D

>Ddebirs b) Ddebris>D

water water

4. A debris flow will have a bigger/smaller floodplain area than a water flow of the
same peak volume?

a) Awater>Adebirs b) Adebris>Awater




2. A debris flow will be faster or slower than a water flow of the same volume?

a) Vwater>Vdebirs b) Vdebris>vwater
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2. Parson et al — Mudflow and Debris Flow

@ Newtonian
@ Bingham
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2. Parson et al — Mudflow and Debris Flow

Fine 2D Simulations:

Features
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5 mm resolution
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2. Parson et al — Mudflow and Debris Flow (2D)

Fine 2D Simulations:

Newtonian (t=10s)
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3. Hungr et al — Non-Newtonian Dam Breach

30.5 m Dam Breach
1,000+ m Runout
p=1,835 km/m3

Bingham: dv
T,=1,500 N/m? T=1,+ g (d_zx>
1g = 100 Pa-s

— Initial profile
— Analytical (Hungr 1995)
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3. Hungr et al — Non-Newtonian Dam Breach

— Analytical (Hungr 1995)
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4. USGS Debris Flume
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US Geological Survey - Debris Flume
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US Geological Survey - Debris Flume
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1. Next Steps. What Non-Newtonian approaches would you like to see?

2. Non-Newtonian (and 2D sediment transport) will be available for testing in
a pre-Beta that will be available shortly. Email me if you want to test:
stanford.gibson@usace.army.mil



