What's New with HEC-RAS 5.1

Gary Brunner, P.E., D. WRE, M.ASCE

Major New Hydraulics Features for HEC-RAS 5.1

- Spatial Precipitation
- Spatial Infiltration
- Wind Forces
- 1D Finite Volume solver
- New 2D full momentum solver with greater Momentum conservation properties
- Pump stations inside 2D Flow Areas
- ID Bridge Hydraulics inside 2D Flow Areas
- Computational speed improvements
- 3D Visualization tool

Spatial Precipitation

Gridded Data

- HEC-DSS file format (from HEC-MetView)
- GRIB NWS
- NetCDF NWS

Point Gage Data

- HEC-DSS time series
 - Regular Interval
 - Irregular Interval
- User Entered into a Table

Unsteady Flow Boundary Conditions

File Options Help Description Wind Forces: No Wind Forces Air Density: Standard Meteorological Stations (required for point time series data) View/Edit Stations Plot Stations Plot Stations Precipitation Mode: Gridded Point Source Constant DSS Data Filename: C:\HEC Data\HEC:RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\ Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/ Projection Override (Optional): Mint Description Projection Override (Optional): Mint Description Projection Override (Optional): Mint Description Projection Override (Optional): Mint Projection Ove	1 Unsteady Flow Data - Gridded Precipitation -	×
Boundary Conditions Initial Conditions Meteorological Data Precipitation: Use Precipitation View Wind Forces: No Wind Forces Air Density: Standard Meteorological Stations (required for point time series data) View/Edit Stations Plot Stations Meteorological Variables Precipitation Mode: Gridded Ratio (Optional): 10 Gridded Data - DSS (ratio:10) Gridded Point Source Gridded Constant DSS Data Filename: C:\HEC Data\HEC-RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\ Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/	File Options Help	
Precipitation: Use Precipitation Vind Forces: No Wind Forces Air Density: Standard Meteorological Stations (required for point time series data) View/Edit Stations Plot Stations Meteorological Variables Precipitation Mode: Gridded vatio (Optional): 10 Gridded Data - DSS (ratio:10) Gridded Point Source Gridded Constant DSS Data Filename: c:\HEC Data\HEC-RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\ Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/	Description	Apply Data
Meteorological Stations (required for point time series data) View/Edit Stations Plot Stations Meteorological Variables Precipitation Mode: Gridded Tatio (Optional): 10 Gridded Data - DSS (ratio:10) Gridded Point Source Gridded Tation DSS Data Filename: c:\HEC Data\HEC-RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\ Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/	Boundary Conditions Initial Conditions Meteorological Data	
View/Edit Stations Plot Stations Meteorological Variables Precipitation Mode: Gridded Ratio (Optional): 10 Gridded Data - DSS (ratio:10) Gridded Point Source Gridded Point DSS Data Filename: c:\HEC Data\HEC-RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\ Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/ Projection Override (Optional):	Precipitation: Use Precipitation 💌 Wind Forces: No Wind Forces 💌 Air Density: Standard	_
Precipitation Mode: Gridded None Point Source Gridded Constant DSS Data Filename: c:\HEC Data\HEC-RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\ Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/ Projection Override (Optional): Image: Constant image:		
Mode: Gridded Image: Constant Image: Constant <td>-</td> <td></td>	-	
Source Gridded Constant DSS Data Filename: c:\HEC Data\HEC-RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\ Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/	Mode: Gridded Tatio (Optional): 10 Gridded Data - DSS (ratio:10)	
Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/ Projection Override (Optional): Image: Content of the second s	Source Gridded	
Projection Override (Optional):	Filename: c:\HEC Data\HEC-RAS\Automated Test Datasets 51\2D Unsteady Flow Hydraulics\	
	Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/	
· · · · · · · · · · · · · · · · · · ·		۲ġ

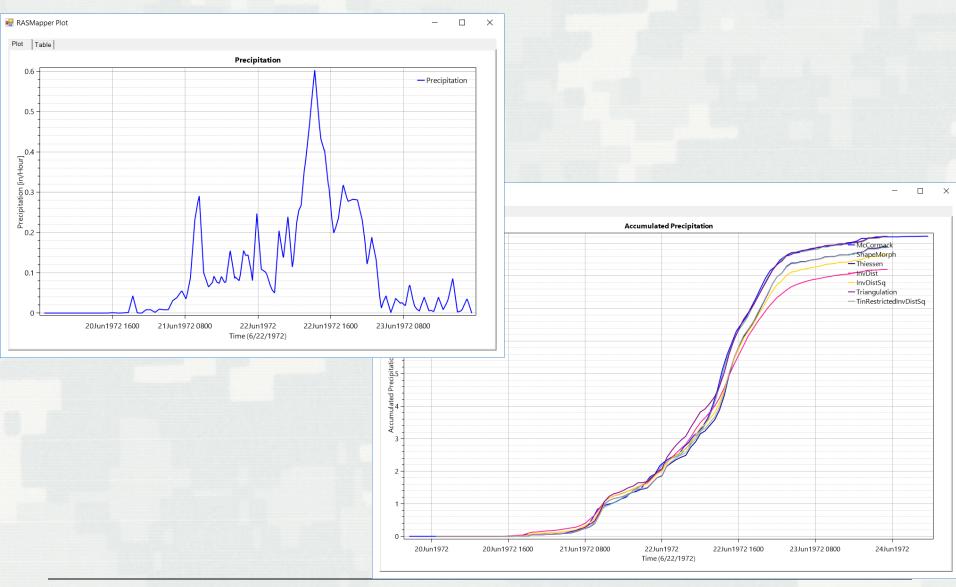
Gridded Data

Boundary Conditions Initial Conditions Meteorological Data	
Precipitation: Use Precipitation 🗨 Wind Forces: No Wind Forces 💌 Air Density: Standard	~
Meteorological Stations (required for point time series data) View/Edit Stations Plot Stations	
Meteorological Variables	
Precipitation	
Mode: Gridded Ratio (Optional): 10 Gridded Data - DSS (ratio:10)	
Gridded Data	
Source: DSS 🔹	
DSS Data DSS	
Filename Multiple Raster Files S\Automated Test Datasets 51\2D Unsteady Flow Hydraulics	e l
Path: /SHG/MARFC/PRECIP/01SEP2018:0200/01SEP2018:0300/NEXRAD/	r i
Projection Override (Optional):	er i
Units Override (Optional):	

Gridded Precipitation example HEC-RAS

Point Gage Data

Unstead	steady Flow Data - Point Precipiation Data 1972				—		
Optio	ptions Help						
scription Apply Da							
cription						Ş	Арріу Da
undary C	Conditions Initial Con	ditions M	eteorological	Data			
cinitatio	n: Use Precipitation	- Mind E		lind Forces	Air Doneit	v: Standar	d =
	, _		,	-		y. Jotanuai	u <u>·</u>
Meteor	ological Stations (r	required	for point tir	ne series d	ata) — —		
View/Ed	lit Stations	Plot Statior	ıs				
	gical Variables						
Precipit	ation						
Aode:	Point 🗾 Rat	io (Optiona	I):	Point Time S	Series Mode (N	earest)	
B							
Mete	eorological Stations						
-	-						
Det	ailed View Summary	View					
	1						
	Station Name	Height	Project X	Project Y	Longitude	Latitude	
	ALVIN BUSH DAM	2	1922740.6	431189.94	-77.9166667	41.3	
	DRIFTWOOD	2	1863234.88		-78.1333333	41.3383333	
3	HOLLIDAYSBURG 2	2	1790610.4	95591.73	-78.3888889	40.4272222	2
4	MILROY 2 WNW	2	2012703.14	199422.25	-77.5905556	40.7138889	9
5	PHILIPSBURG 8 E	2	1838408.6	266227.39	-78.2205556	40.8963889	9
6	RAYSTOWN LAKE 2	2	1896963.52	97268.31	-78.0069444	40.4333333	3
7	TYRONE	2	1832952.79	183975.72	-78.2386111	40.6705556	5
8	WILLIAMSPORT RGNL	2	2197049.88	394058.28	-76.9188889	41.2452	2
9	CRESSON 1 SE	2	1734232.01	104373.03	-78.5916667	40.45	5
10	CURWENSVILLE LAKE	2	1786461.52	322534.71	-78.41	41.0	5
11	DU BOIS 7 E	2	1690689.7	349266.08	-78.7583333	41.1208333	3
	MADERA 2 SE	2	1778927.51	241828.17	-78,435	40.8283333	
	MILLHEIM	2	2044073.29	263969.12	-77.4766667	40.8908333	
	RENOVO 6 S	2	1968271.12	422543.08	-77.7508333	41.326388	
	SAYERS DAM	2	2007191.2	321872.44		41.0	
	STATE COLLEGE	2	1943600.61	248985.51	-77.84	40.8	
						Cancel	
10	ot Stations					ОК (Lancer


Point Gage Data

上 Unsteady Flow Data - Point Precipiation Data 1972 — 🛛	×
ile Options Help	
Description	Apply Data
Boundary Conditions Initial Conditions Meteorological Data	
Precipitation: Use Precipitation Wind Forces: No Wind Forces Air Density: Standard	-
Meteorological Stations (required for point time series data) View/Edit Stations Plot Stations	
Meteorological Variables Precipitation	
Mode: Point Ratio (Optional): Point Time Series Mode (Nearest)	
1 ALVIN BUSH DAM Inverse Distance o 0.500 (inches) 2 CRESSON 1 SE Inverse Distance Squared o 0.470 (inches) 3 CURWENSVILLE L Triangulation o 0.300 (inches) 4 DRIFTWOOD Peak Preservation o 0.390 (inches) 5 DU BOIS 7 E Shape Preservation o 0.510 (inches) 6 HOLLIDAYSBURG 2 Laplace 0.000 (inches)	

Cumulative Rainfall

Rainfall Time Series Plots

Spatial Infiltration

Three Methods

- Deficit Constant method
- SCS Curve Number
- Green and Ampt
- Spatial Data
 - Soils
 - Land cover

Other Optional Data

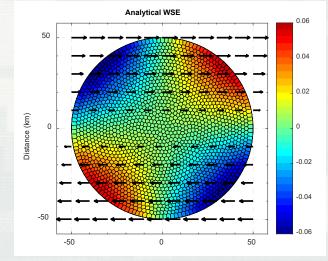
- Evapotranspiration
- Mean Monthly Pan evaporation data

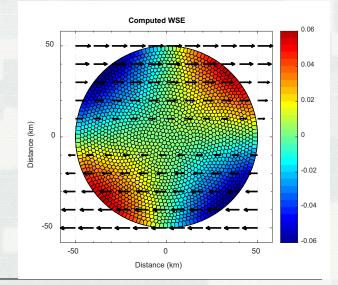
Wind Forces

Added to 1D and 2D solution algorithms

- 1D Finite Difference and 1D Finite Volume SWE
- 2D SWE current and new equation solver.
- Not in 2D Diffusion Wave solver

1D Momentum Equation


$$\frac{\partial Q}{\partial t} + \frac{\partial (VQ)}{\partial x} + gA\left(\frac{\partial \eta}{\partial x} + S_f + S_h\right) = T_w \frac{\tau_{sh}}{\rho_w}$$


Data Sources

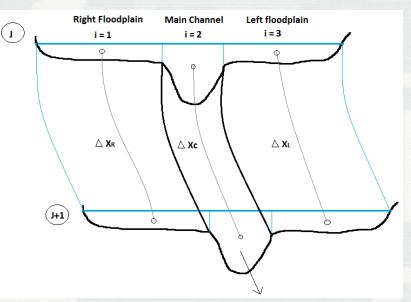
- Gridded Data
- Gaged Point data
- User Entered Table

Wind Verification

- Flat circular basin
- Spatially variable wind forcing in the x-direction only
- Linear bottom friction
- Polygonal mesh

Wind Application - Animation

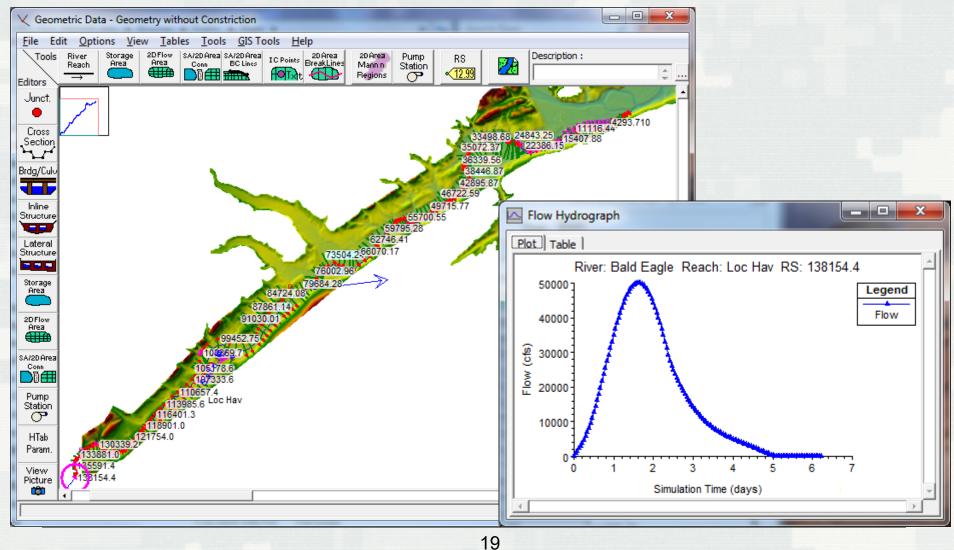
Wind 1D Profile Animation

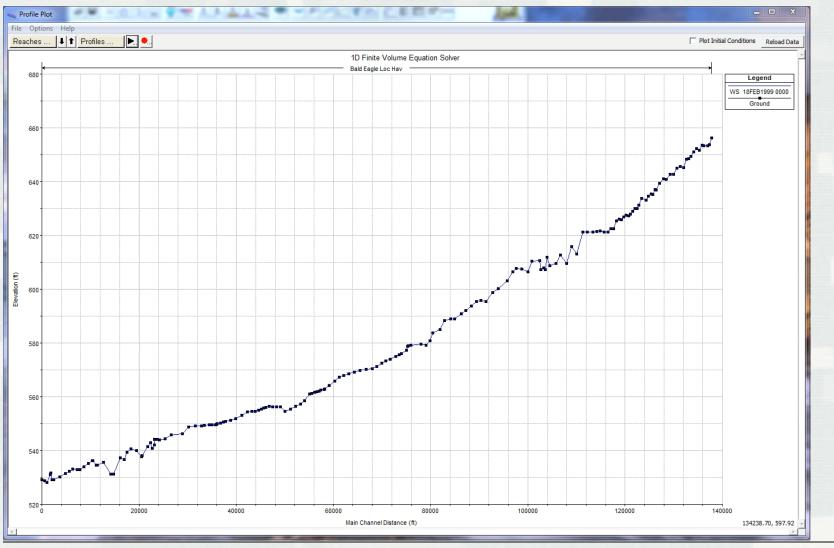

1D Finite Volume Solution Algorithm

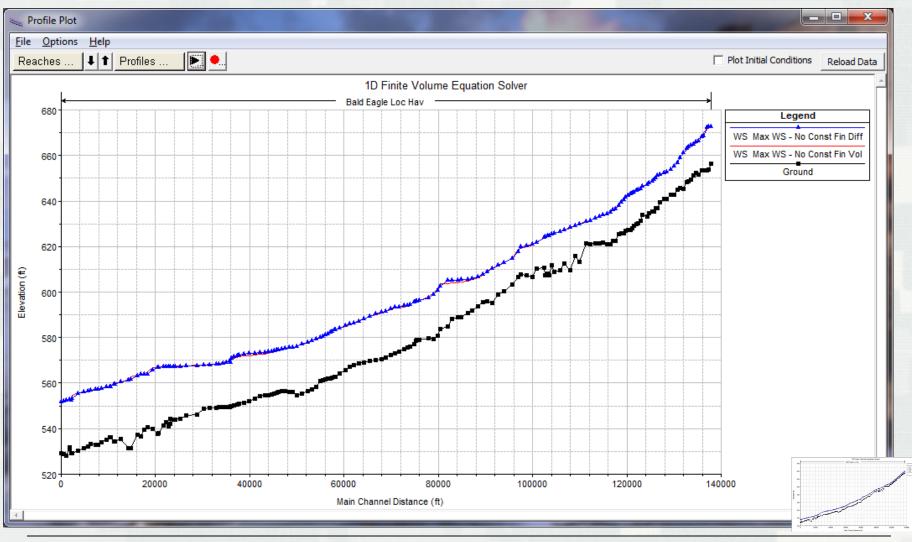
The new 1D Finite Volume algorithm has the following positive attributes:

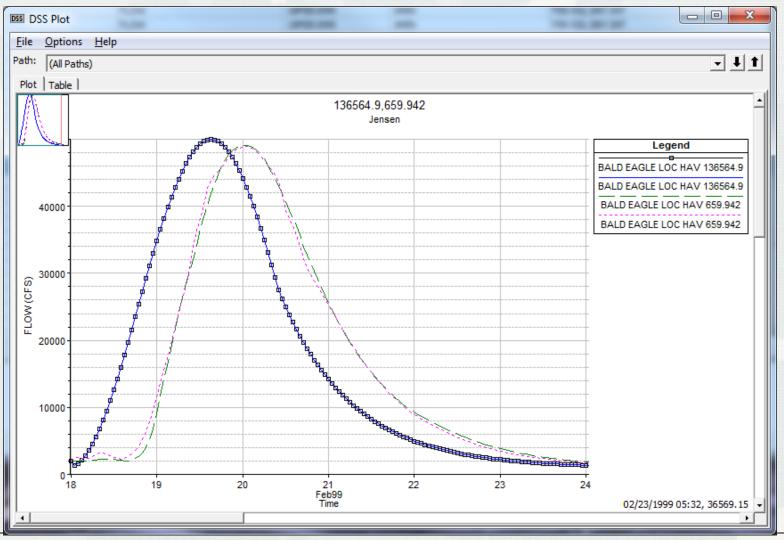

- Can start with channels completely dry, or they can go dry during a simulation (wetting/drying)
- Very stable for low flow modeling
- Can handle extremely rapidly rising hydrographs without going unstable
- Handles subcritical to supercritical flow, and hydraulic jumps better – No special option to turn on.
- Junction analysis is performed as a single 2D cell when connecting 1D reaches (continuity and momentum is conserved through the junction)

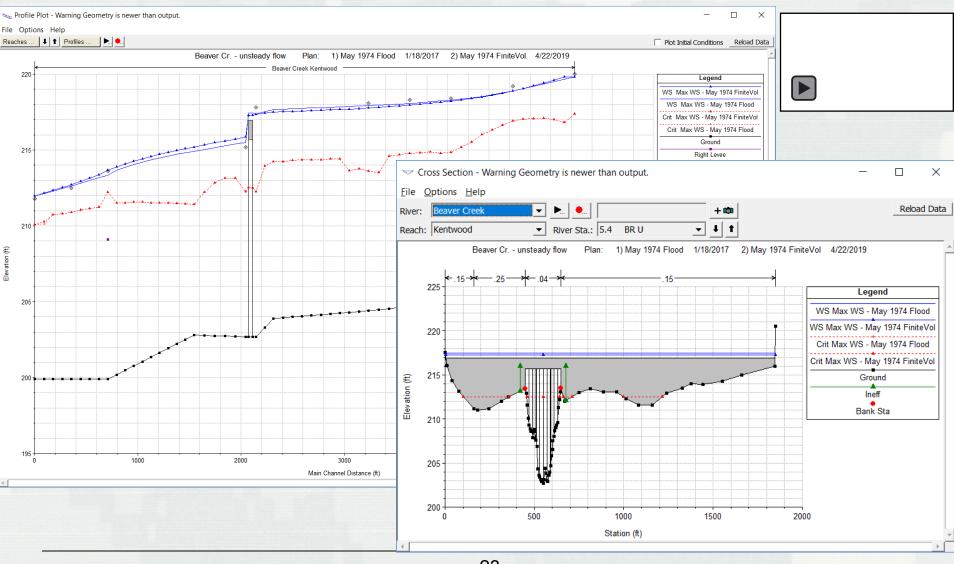
Partial Cells Left floodplain, Main channel, Right floodplain


- Separate cells for main channel, left floodplain and right floodplain.
- Current Finite Difference uses only two flow areas: channel & floodplain
- Notation: Partial cells indexed by *i*
- u_{ji} = channel or overbanks velocities at
- A_{ji} = channel or overbanks partial areas for cross-section *j*
- $A_j = \sum_i A_{ji}$ cross-section total area
- Cross-section partial conveyance $K_{ji} = (A_{ji}R_{ji}^{2/3})/(n_{ji}/k)$
- Cross-section total conveyance $K_j = \sum_i K_{ji}$


Junctions

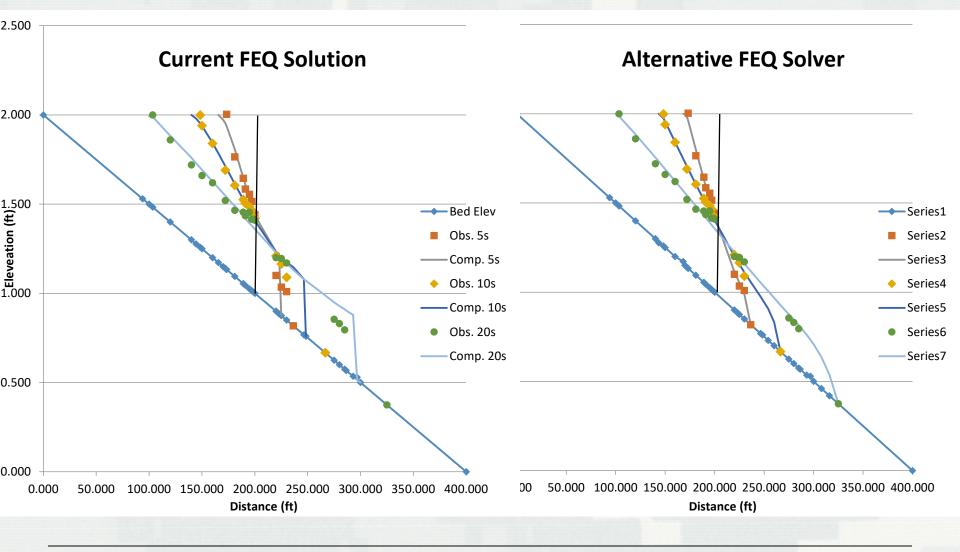

Natural River – No Connections Starting Dry, then wet, then dry


Natural River — Continued Animation - Finite Volume - Dry to Wet to Dry

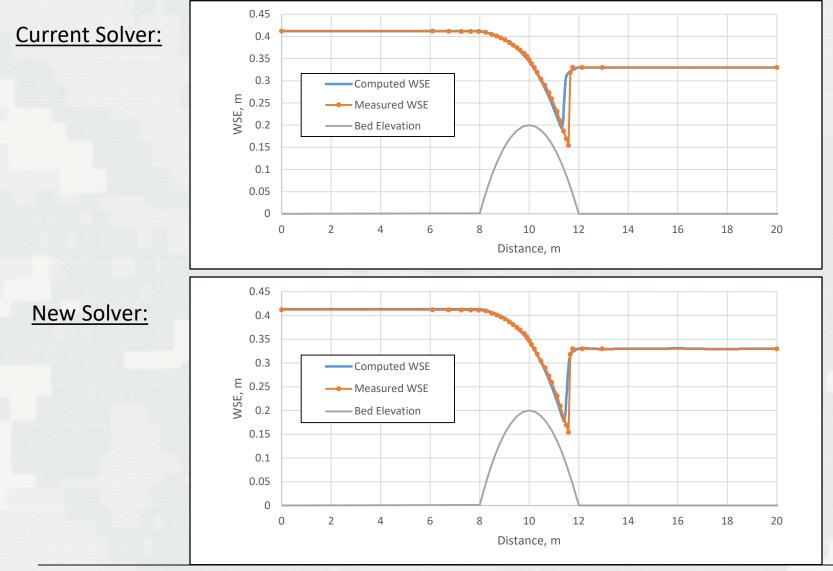

Natural River — Continued Finite Volume vs Finite Difference – Starting Wet

Natural River — Continued Upstream Inflow and Downstream Outflows

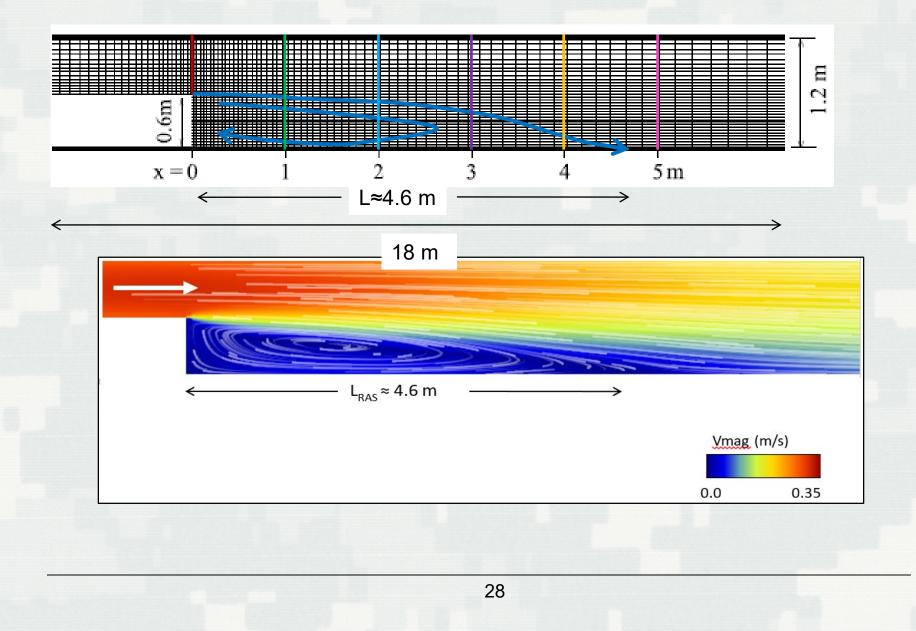
1D Bridge Hydraulics Beaver Creek

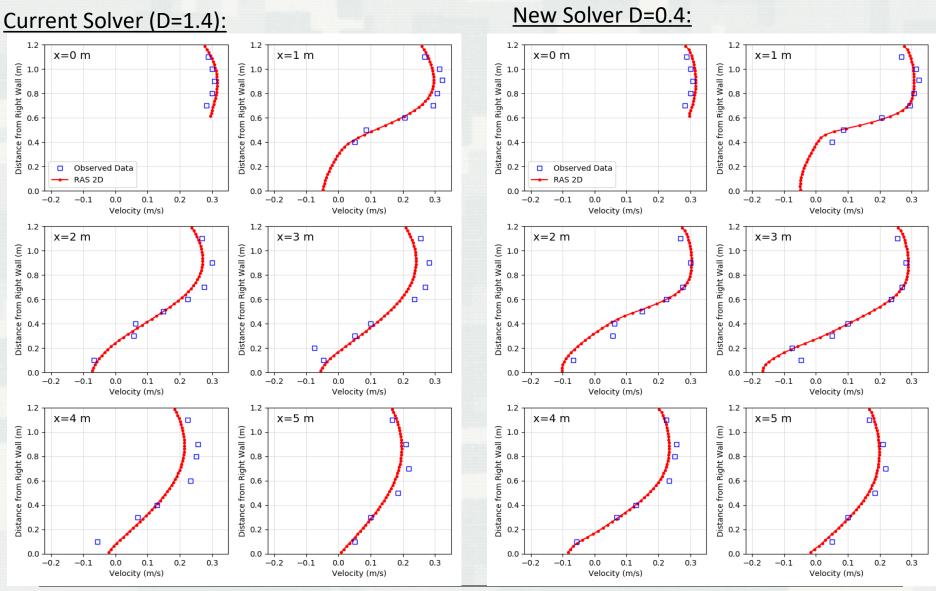


Bald Eagle Creek with Bridges


Alternative Solution Scheme for Shallow Water Equations

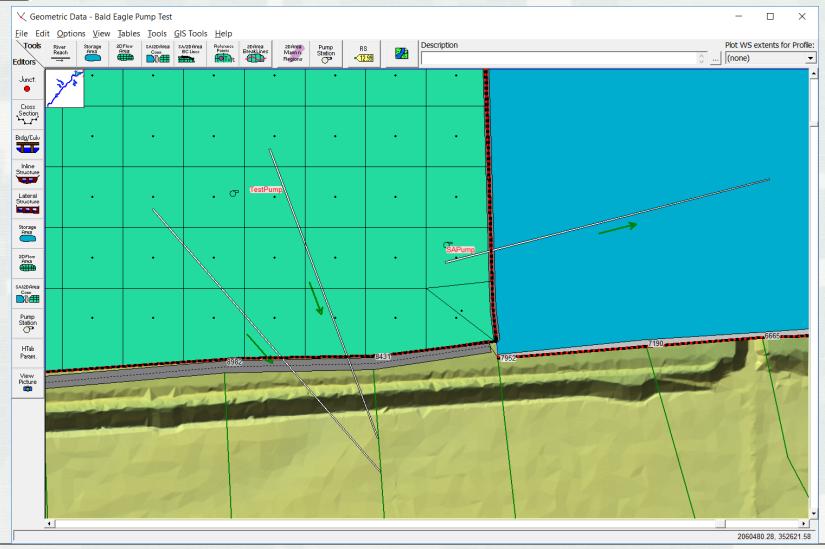
- Momentum conservative discretization of the acceleration terms
 - Greater momentum conservation than current solver in current version
- Semi Explicit Time step is somewhat limited by the Courant condition
 - Generally requires smaller time steps and more computational time to run


Sudden Dambreak in a Flume (WES Data Set and report from 1960)


Flow over a Bump assuming no Friction

Sudden Expansion – Lab Data

Sudden Expansion


Pump Stations Connected to 2D Flow Areas

- Pump Stations now how spatial connections
 - X, Y coordinates for too and from locations
- Can now connect to 2D flow areas
 - 2D cell to another 2D cell
 - 2D cell to Storage Area
 - 2D cell to 1D river reach (XS location)

Pump Stations Example

*


Pump Station

Pump Stations Example

Pump Group: G	×
Selected Layer Depth	
 Belle Conditions Casemetries Casemetries<td></td>	
Image: Construction of the construc	
 Event Conditions Geometry Opepth (Mex) Velocity (01JAN1999 12:00:00) WSE (03JAN1999 20:30:00) Moe LandUse Main ChannelBanks USGS Imagery Google Hybrid stret100k_1_p0035 NLCD 2016 Land Cover L48 20190- NLCD 2016 Land Cover L48 20190- 	ata Editor me: UpTheHill Image: UpTheHill Image: UpTheHill <t< td=""></t<>
32 Plot Pump Efficie	ciency Curves OK Cance

1D Bridge Hydraulics inside of a 2D Flow Area

- Develop a family of Headwater Tailwater Flow curves from 1D bridge hydraulic calculations
- Option to compute flow over the top of the bridge as weir flow or normal 2D flow equations
- Flows through the bridge opening will take into account momentum transfer
 - Flow and Velocity Boundary condition

Computational Speed Improvements

New Matrix Format

- Previous versions allowed the matrix to be Non-Symmetric
- Version 5.1 uses a Symmetric matrix format
- This allowed us to use a faster solver Symmetric Positive Definite Solver

Boundary Condition Cells

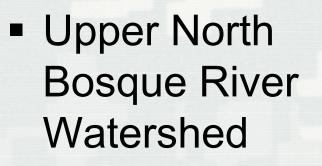
- Previous version had B.C. cells along entire boundary of 2D area
 - Done for simplicity and consistency (.i.e. keep the code simple)
- Version 5.1 only has extra cells a user defined boundary condition locations
 - Fewer cells means less computations Faster solution

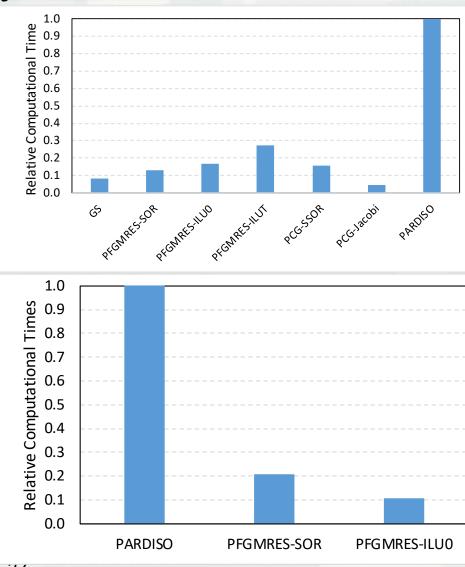
5.0.7 vs 5.1 2D Computational Speed

2D Test Name	Number Cells	Equation Type	5.0.7	5.1	Speed Factor
Bald Eagle Detailed	87,022	FEQ	1 hr 29 min 55s	59 min 37s	1.51
Muncie 2D 50ft Grid	5,376	FEQ	1 min 15s	55s	1.36
Saint Paul 2D	2,251	Diff	1 min 32s	1 min 01s	1.51
EU Test No 2	10,000	FEQ	40s	22s	1.82
EU Test No 4	80,000	FEQ	56s	40s	1.40
EU Test No 5	7,460	FEQ	50s	36s	1.39
EU Test No 6	36,492	FEQ	1 min 18s	50s	1.56
EU Test No 7 20m grid	16,590	FEQ	12 min 25s	10 min 26s	1.19
EU Test 8A 2m grid	97,000	FEQ	1 hr 10 min 36s	48 min 26s	1.45
Yolo Bypass2	17,129	FEQ	9 min 34s	8 min 11s	1.17
Boise River	10,423	FEQ	10 min 46s	6 min 57s	1.55
Truckee River 1D/2D	162,805	Diff	1 hr 18 min 27s	47 min 6s	1.67
400 sq mi Watershed	2,033,190	Diff	16 hrs 45 min 14s	9 hrs 53 min 55s	1.69
Average Speed Increase					1.50

2D Iterative Matrix Solvers

HEC-RAS 5.0.7 uses a solver called PARDISO - direct solver

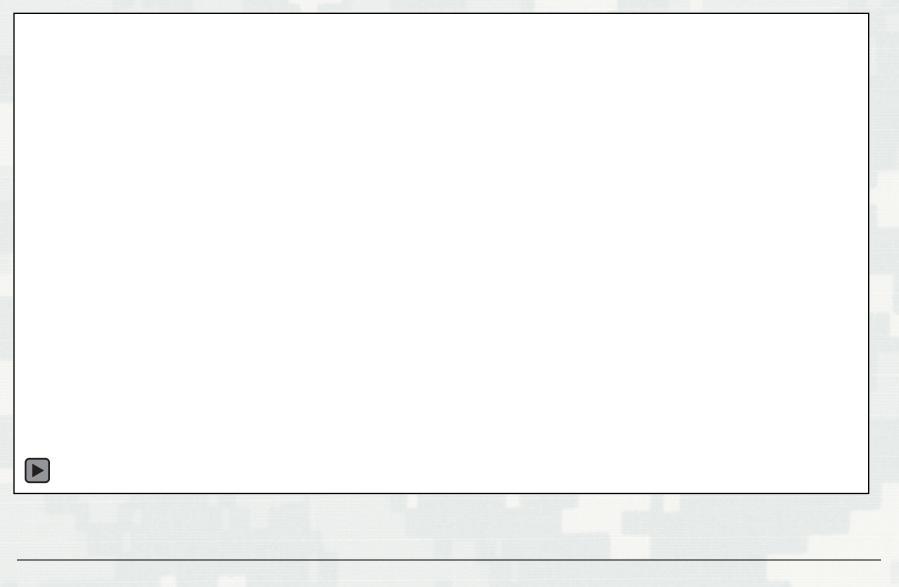

- Better for model stability and volume accounting
- Slower


For HEC-RAS 5.1 we have added optional Iterative Solvers

- Potentially faster
- Requires user-based solution tolerance
- Potentially less stable

Iterative Matrix Solvers Note: Times are only for matrix solution

 Channel constriction and expansion



5.0.7 vs 5.1 with Iterative Solvers

2D Test Name	Number Cells	Equation Type	5.0.7	5.1	5.1 Iter Solv	Speed Factor
Bald Eagle Detailed	87,022	FEQ	1 hr 29 min 55s	59 min 37s	51 min 47s	1.73
Muncie 2D 50ft Grid	5,376	FEQ	1 min 15s	55s	51s	1.47
Saint Paul 2D	2,251	Diff	1 min 32s	1 min 01s	1 min 52s	0.82
EU Test No 2	10,000	FEQ	40s	22s	13s	3.08
EU Test No 4	80,000	FEQ	56s	40s	25s	2.24
EU Test No 5	7,460	FEQ	50s	36s	24s	2.08
EU Test No 6	36,492	FEQ	1 min 18s	50s	37s	2.11
EU Test No 7 20m grid	16,590	Diff	12 min 25s	10 min 26s	6 min 57s	1.79
EU Test 8A 2m grid	97,000	FEQ	1 hr 10 min 36s	48 min 26s	15 min 2s	4.69
Yolo Bypass2	17,129	FEQ	9 min 34s	8 min 11s	5 min 41s	1.68
Boise River	10,423	FEQ	10 min 46s	6 min 57s	4 min 50s	2.23
Truckee River 1D/2D	162,805	Diff	1 hr 18 min 27s	47 min 6s	1 hr 10 min 30s	1.1
400 sq mi Watershed	2,033,190	Diff	16 hrs 45 min 14s	9 hrs 53 min 55s	11 hr 3 mins 43s	1.52
Average Speed Increase						2.04

3D Visualization tool

